From a367812fe778bd83962aff942f04ddf3928c1f42 Mon Sep 17 00:00:00 2001 From: geoffsee <> Date: Tue, 24 Jun 2025 15:12:12 -0400 Subject: [PATCH] update prompts and ollama endpoint --- packages/server/prompts/few_shots.ts | 81 ++++++------------- .../server/providers/_ProviderRepository.ts | 2 +- 2 files changed, 26 insertions(+), 57 deletions(-) diff --git a/packages/server/prompts/few_shots.ts b/packages/server/prompts/few_shots.ts index f47e63f..94affe0 100644 --- a/packages/server/prompts/few_shots.ts +++ b/packages/server/prompts/few_shots.ts @@ -1,50 +1,52 @@ const a = { - "Can you search for the latest quantum computing breakthroughs?": - "I don't have web access.", + "Can you search for the latest quantum computing breakthroughs?": + "I don't have web access.", }; const b = { - "Calculate the number of unique ways to arrange the letters in the word 'SUCCESS'.": ` + "Calculate the number of unique ways to arrange the letters in the word SUCCESS.": ` Alright, let's tackle 'SUCCESS' and see just how unique it can get! -1. Step 1: Count the Letters +### Step 1: Count the Letters The word 'SUCCESS' has 7 letters, but it’s no free-for-all—there are repeats! - S: 3 times - U: 1 time - C: 2 times - E: 1 time -Erdős would call this a combinatorial party with some guests arriving multiple times. -2. Step 2: The Formula for Permutations with Repetition +### Step 2: The Formula for Permutations with Repetition When letters repeat, we divide to avoid overcounting. The magic formula is: $$ \frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!} $$ Here, (n) is the total number of letters, and (k_i) are the frequencies of each unique letter. -3. Step 3: Plug in the Values +### Step 3. Plug in the Values Let’s compute: $$ \frac{7!}{3! \cdot 1! \cdot 2! \cdot 1!} = 420 $$ -4. Step 4: Reveal the Result -There are **420 unique arrangements** of 'SUCCESS'. Mathematically satisfying, isn’t it? It’s as if every version of success gets its own unique permutation!`, - "Calculate the number of unique ways to arrange the letters in the word 'MISSISSIPPI'.": `Ready for some permutation wizardry? Let’s decode 'MISSISSIPPI'! -1. Step 1: Count the Letters +### Step 4: Reveal the Result +There are 420 unique arrangements of 'SUCCESS'. Mathematically satisfying, isn’t it? It’s as if every version of success gets its own unique permutation!`, + + + "Calculate the number of unique ways to arrange the letters in the word MISSISSIPPI.": + `Ready for some permutation wizardry? Let’s decode 'MISSISSIPPI'! +### Step 1: Count the Letters 'MISSISSIPPI' has 11 letters. But like a social network with cliques, some letters appear in multiples: - M: 1 - I: 4 - S: 4 - P: 2 -2. Step 2: Apply the Permutation Formula for Repetition +### Step 2: Apply the Permutation Formula for Repetition The formula for such a case is: $$ \frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!} $$ -3. Step 3: Plug in the Values +### Step 3: Plug in the Values Here’s where we let the math do its magic: $$ \frac{11!}{1! \cdot 4! \cdot 4! \cdot 2!} $$ -4. Step 4: Simplify Step-by-Step +### Step 4: Simplify Step-by-Step Let’s break it down: - (11! = 39,916,800) - (4! = 24) @@ -53,19 +55,18 @@ Let’s break it down: $$ \frac{39,916,800}{1 \cdot 24 \cdot 24 \cdot 2} = 34,650 $$ -5. Step 5: The Grand Finale -There are **34,650 unique arrangements** of 'MISSISSIPPI'. Erdős would marvel at the sheer elegance of these numbers—much like the way rivers meander through the land, permutations flow through possibilities.`, +### Step 5: The Grand Finale +There are 34,650 unique arrangements of 'MISSISSIPPI'.`, }; const c = { - // c remains unchanged as it contains image generation prompts - "Render a Greek statue with warm marble tones and realistic proportions.": - "I don't have the ability to generate images right now. ", + // c remains unchanged as it contains image generation prompts + "Render a Greek statue with warm marble tones and realistic proportions.": + "I don't have the ability to generate images right now. ", }; const d = { - "Demonstrate all outputs.": ` -# Comprehensive Markdown Showcase + "Demonstrate markdown formatted text.": ` ## Headers ~~~markdown # Large Header @@ -73,80 +74,48 @@ const d = { ### Small Header ~~~ ## Ordered Lists -~~~markdown 1. First Item 2. Second Item 1. Subitem 1 2. Subitem 2 3. Third Item -~~~ ## Unordered Lists -~~~markdown - First Item - Second Item - Subitem 1 - Subitem 2 -~~~ ## Links -~~~markdown [Visit OpenAI](https://openai.com/) -~~~ ## Images -~~~markdown -![Example Image](example.jpg) -~~~ ![Example Image](example.jpg) ## Inline Code -~~~markdown \`console.log('Hello, Markdown!')\` -~~~ ## Code Blocks -\`\`\`markdown ~~~javascript console.log(marked.parse('A Description List:\\n' + ': Topic 1 : Description 1\\n' + ': **Topic 2** : *Description 2*')); ~~~ -\`\`\` ## Tables -~~~markdown | Name | Value | |---------|-------| | Item A | 10 | | Item B | 20 | -~~~ ## Blockquotes -~~~markdown > Markdown makes writing beautiful. > - Markdown Fan -~~~ ## Horizontal Rule -~~~markdown --- -~~~ ## Font: Bold and Italic -~~~markdown **Bold Text** *Italic Text* -~~~ ## Font: Strikethrough -~~~markdown ~~Struck-through text~~ -~~~ ---- -## Math: Inline -This is block level katex: +## Math ~~~markdown $$ c = \\\\pm\\\\sqrt{a^2 + b^2} -$$ -~~~ -## Math: Block -This is inline katex -~~~markdown -$c = \\\\pm\\\\sqrt{a^2 + b^2}$ -~~~ -`, +$$`, }; -export default { a, b, c, d }; +export default {a, b, c, d}; diff --git a/packages/server/providers/_ProviderRepository.ts b/packages/server/providers/_ProviderRepository.ts index 2794683..4df3696 100644 --- a/packages/server/providers/_ProviderRepository.ts +++ b/packages/server/providers/_ProviderRepository.ts @@ -20,7 +20,7 @@ export class ProviderRepository { anthropic: 'https://api.anthropic.com/v1', openai: 'https://api.openai.com/v1', cerebras: 'https://api.cerebras.com/v1', - ollama: "http://localhost:11434", + ollama: "http://localhost:11434/v1", mlx: "http://localhost:10240/v1", }