mirror of
https://github.com/geoffsee/open-gsio.git
synced 2025-09-08 22:56:46 +00:00
Remove unused services and refactor SDK structure
Deleted outdated SDKs and services, including DocumentService and markdown-sdk. Consolidated and relocated SDKs into a unified "providers" structure to improve maintainability. Updated imports and adjusted utils naming for consistency.
This commit is contained in:

committed by
Geoff Seemueller

parent
ceeefeff14
commit
fc22278b58
@@ -1,4 +1,4 @@
|
||||
import { Sdk } from "./sdk";
|
||||
import { Utils } from "./utils";
|
||||
import few_shots from "../prompts/few_shots";
|
||||
|
||||
export class AssistantSdk {
|
||||
@@ -12,10 +12,10 @@ export class AssistantSdk {
|
||||
userTimezone = "UTC",
|
||||
userLocation = "",
|
||||
} = params;
|
||||
const selectedFewshots = Sdk.selectEquitably?.(few_shots) || few_shots;
|
||||
const selectedFewshots = Utils.selectEquitably?.(few_shots) || few_shots;
|
||||
const sdkDate =
|
||||
typeof Sdk.getCurrentDate === "function"
|
||||
? Sdk.getCurrentDate()
|
||||
typeof Utils.getCurrentDate === "function"
|
||||
? Utils.getCurrentDate()
|
||||
: new Date().toISOString();
|
||||
const [currentDate] = sdkDate.split("T");
|
||||
const now = new Date();
|
||||
|
@@ -1,54 +0,0 @@
|
||||
export class MarkdownSdk {
|
||||
static formatContextContainer(contextContainer) {
|
||||
let markdown = "# Assistant Tools Results\n\n";
|
||||
|
||||
for (const [key, value] of contextContainer.entries()) {
|
||||
markdown += `## ${this._escapeForMarkdown(key)}\n\n`;
|
||||
markdown += this._formatValue(value);
|
||||
}
|
||||
|
||||
return markdown.trim();
|
||||
}
|
||||
|
||||
static _formatValue(value, depth = 0) {
|
||||
if (Array.isArray(value)) {
|
||||
return this._formatArray(value, depth);
|
||||
} else if (value && typeof value === "object") {
|
||||
return this._formatObject(value, depth);
|
||||
} else {
|
||||
return this._formatPrimitive(value, depth);
|
||||
}
|
||||
}
|
||||
|
||||
static _formatArray(arr, depth) {
|
||||
let output = "";
|
||||
arr.forEach((item, i) => {
|
||||
output += `### Item ${i + 1}\n`;
|
||||
output += this._formatValue(item, depth + 1);
|
||||
output += "\n";
|
||||
});
|
||||
return output;
|
||||
}
|
||||
|
||||
static _formatObject(obj, depth) {
|
||||
return (
|
||||
Object.entries(obj)
|
||||
.map(
|
||||
([k, v]) =>
|
||||
`- **${this._escapeForMarkdown(k)}**: ${this._escapeForMarkdown(v)}`,
|
||||
)
|
||||
.join("\n") + "\n\n"
|
||||
);
|
||||
}
|
||||
|
||||
static _formatPrimitive(value, depth) {
|
||||
return `${this._escapeForMarkdown(String(value))}\n\n`;
|
||||
}
|
||||
|
||||
static _escapeForMarkdown(text) {
|
||||
if (typeof text !== "string") {
|
||||
text = String(text);
|
||||
}
|
||||
return text.replace(/(\*|`|_|~)/g, "\\$1");
|
||||
}
|
||||
}
|
@@ -1,156 +0,0 @@
|
||||
interface BaseMessage {
|
||||
role: "user" | "assistant" | "system";
|
||||
}
|
||||
|
||||
interface TextMessage extends BaseMessage {
|
||||
content: string;
|
||||
}
|
||||
|
||||
interface O1Message extends BaseMessage {
|
||||
content: Array<{
|
||||
type: string;
|
||||
text: string;
|
||||
}>;
|
||||
}
|
||||
|
||||
interface LlamaMessage extends BaseMessage {
|
||||
content: Array<{
|
||||
type: "text" | "image";
|
||||
data: string;
|
||||
}>;
|
||||
}
|
||||
|
||||
interface MessageConverter<T extends BaseMessage, U extends BaseMessage> {
|
||||
convert(message: T): U;
|
||||
convertBatch(messages: T[]): U[];
|
||||
}
|
||||
|
||||
class TextToO1Converter implements MessageConverter<TextMessage, O1Message> {
|
||||
convert(message: TextMessage): O1Message {
|
||||
return {
|
||||
role: message.role,
|
||||
content: [
|
||||
{
|
||||
type: "text",
|
||||
text: message.content,
|
||||
},
|
||||
],
|
||||
};
|
||||
}
|
||||
|
||||
convertBatch(messages: TextMessage[]): O1Message[] {
|
||||
return messages.map((msg) => this.convert(msg));
|
||||
}
|
||||
}
|
||||
|
||||
class O1ToTextConverter implements MessageConverter<O1Message, TextMessage> {
|
||||
convert(message: O1Message): TextMessage {
|
||||
return {
|
||||
role: message.role,
|
||||
content: message.content.map((item) => item.text).join("\n"),
|
||||
};
|
||||
}
|
||||
|
||||
convertBatch(messages: O1Message[]): TextMessage[] {
|
||||
return messages.map((msg) => this.convert(msg));
|
||||
}
|
||||
}
|
||||
|
||||
class TextToLlamaConverter
|
||||
implements MessageConverter<TextMessage, LlamaMessage>
|
||||
{
|
||||
convert(message: TextMessage): LlamaMessage {
|
||||
return {
|
||||
role: message.role,
|
||||
content: [
|
||||
{
|
||||
type: "text",
|
||||
data: message.content,
|
||||
},
|
||||
],
|
||||
};
|
||||
}
|
||||
|
||||
convertBatch(messages: TextMessage[]): LlamaMessage[] {
|
||||
return messages.map((msg) => this.convert(msg));
|
||||
}
|
||||
}
|
||||
|
||||
class LlamaToTextConverter
|
||||
implements MessageConverter<LlamaMessage, TextMessage>
|
||||
{
|
||||
convert(message: LlamaMessage): TextMessage {
|
||||
return {
|
||||
role: message.role,
|
||||
content: message.content
|
||||
.filter((item) => item.type === "text")
|
||||
.map((item) => item.data)
|
||||
.join("\n"),
|
||||
};
|
||||
}
|
||||
|
||||
convertBatch(messages: LlamaMessage[]): TextMessage[] {
|
||||
return messages.map((msg) => this.convert(msg));
|
||||
}
|
||||
}
|
||||
|
||||
class MessageConverterFactory {
|
||||
static createConverter(
|
||||
fromFormat: string,
|
||||
toFormat: string,
|
||||
): MessageConverter<any, any> {
|
||||
const key = `${fromFormat}->${toFormat}`;
|
||||
const converters = {
|
||||
"text->o1": new TextToO1Converter(),
|
||||
"o1->text": new O1ToTextConverter(),
|
||||
"text->llama": new TextToLlamaConverter(),
|
||||
"llama->text": new LlamaToTextConverter(),
|
||||
};
|
||||
|
||||
const converter = converters[key];
|
||||
if (!converter) {
|
||||
throw new Error(`Unsupported conversion: ${key}`);
|
||||
}
|
||||
|
||||
return converter;
|
||||
}
|
||||
}
|
||||
|
||||
function detectMessageFormat(message: any): string {
|
||||
if (typeof message.content === "string") {
|
||||
return "text";
|
||||
}
|
||||
if (Array.isArray(message.content)) {
|
||||
if (message.content[0]?.type === "text" && "text" in message.content[0]) {
|
||||
return "o1";
|
||||
}
|
||||
if (message.content[0]?.type && "data" in message.content[0]) {
|
||||
return "llama";
|
||||
}
|
||||
}
|
||||
throw new Error("Unknown message format");
|
||||
}
|
||||
|
||||
function convertMessage(message: any, targetFormat: string): any {
|
||||
const sourceFormat = detectMessageFormat(message);
|
||||
if (sourceFormat === targetFormat) {
|
||||
return message;
|
||||
}
|
||||
|
||||
const converter = MessageConverterFactory.createConverter(
|
||||
sourceFormat,
|
||||
targetFormat,
|
||||
);
|
||||
return converter.convert(message);
|
||||
}
|
||||
|
||||
export {
|
||||
MessageConverterFactory,
|
||||
convertMessage,
|
||||
detectMessageFormat,
|
||||
type BaseMessage,
|
||||
type TextMessage,
|
||||
type O1Message,
|
||||
type LlamaMessage,
|
||||
type MessageConverter,
|
||||
};
|
@@ -1,100 +0,0 @@
|
||||
import { OpenAI } from "openai";
|
||||
import {
|
||||
_NotCustomized,
|
||||
ISimpleType,
|
||||
ModelPropertiesDeclarationToProperties,
|
||||
ModelSnapshotType2,
|
||||
UnionStringArray,
|
||||
} from "mobx-state-tree";
|
||||
import ChatSdk from "../chat-sdk";
|
||||
|
||||
export class CerebrasSdk {
|
||||
static async handleCerebrasStream(
|
||||
param: {
|
||||
openai: OpenAI;
|
||||
systemPrompt: any;
|
||||
disableWebhookGeneration: boolean;
|
||||
preprocessedContext: ModelSnapshotType2<
|
||||
ModelPropertiesDeclarationToProperties<{
|
||||
role: ISimpleType<UnionStringArray<string[]>>;
|
||||
content: ISimpleType<unknown>;
|
||||
}>,
|
||||
_NotCustomized
|
||||
>;
|
||||
maxTokens: unknown | number | undefined;
|
||||
messages: any;
|
||||
model: string;
|
||||
env: Env;
|
||||
},
|
||||
dataCallback: (data) => void,
|
||||
) {
|
||||
const {
|
||||
preprocessedContext,
|
||||
messages,
|
||||
env,
|
||||
maxTokens,
|
||||
systemPrompt,
|
||||
model,
|
||||
} = param;
|
||||
|
||||
const assistantPrompt = ChatSdk.buildAssistantPrompt({
|
||||
maxTokens: maxTokens,
|
||||
});
|
||||
|
||||
const safeMessages = ChatSdk.buildMessageChain(messages, {
|
||||
systemPrompt: systemPrompt,
|
||||
model,
|
||||
assistantPrompt,
|
||||
toolResults: preprocessedContext,
|
||||
});
|
||||
|
||||
const openai = new OpenAI({
|
||||
baseURL: "https://api.cerebras.ai/v1",
|
||||
apiKey: param.env.CEREBRAS_API_KEY,
|
||||
});
|
||||
|
||||
return CerebrasSdk.streamCerebrasResponse(
|
||||
safeMessages,
|
||||
{
|
||||
model: param.model,
|
||||
maxTokens: param.maxTokens,
|
||||
openai: openai,
|
||||
},
|
||||
dataCallback,
|
||||
);
|
||||
}
|
||||
private static async streamCerebrasResponse(
|
||||
messages: any[],
|
||||
opts: {
|
||||
model: string;
|
||||
maxTokens: number | unknown | undefined;
|
||||
openai: OpenAI;
|
||||
},
|
||||
dataCallback: (data: any) => void,
|
||||
) {
|
||||
const tuningParams: Record<string, any> = {};
|
||||
|
||||
const llamaTuningParams = {
|
||||
temperature: 0.86,
|
||||
top_p: 0.98,
|
||||
presence_penalty: 0.1,
|
||||
frequency_penalty: 0.3,
|
||||
max_tokens: opts.maxTokens,
|
||||
};
|
||||
|
||||
const getLlamaTuningParams = () => {
|
||||
return llamaTuningParams;
|
||||
};
|
||||
|
||||
const groqStream = await opts.openai.chat.completions.create({
|
||||
model: opts.model,
|
||||
messages: messages,
|
||||
|
||||
stream: true,
|
||||
});
|
||||
|
||||
for await (const chunk of groqStream) {
|
||||
dataCallback({ type: "chat", data: chunk });
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,100 +0,0 @@
|
||||
import Anthropic from "@anthropic-ai/sdk";
|
||||
import { OpenAI } from "openai";
|
||||
import {
|
||||
_NotCustomized,
|
||||
ISimpleType,
|
||||
ModelPropertiesDeclarationToProperties,
|
||||
ModelSnapshotType2,
|
||||
UnionStringArray,
|
||||
} from "mobx-state-tree";
|
||||
import ChatSdk from "../chat-sdk";
|
||||
|
||||
export class ClaudeChatSdk {
|
||||
private static async streamClaudeResponse(
|
||||
messages: any[],
|
||||
param: {
|
||||
model: string;
|
||||
maxTokens: number | unknown | undefined;
|
||||
anthropic: Anthropic;
|
||||
},
|
||||
dataCallback: (data: any) => void,
|
||||
) {
|
||||
const claudeStream = await param.anthropic.messages.create({
|
||||
stream: true,
|
||||
model: param.model,
|
||||
max_tokens: param.maxTokens,
|
||||
messages: messages,
|
||||
});
|
||||
|
||||
for await (const chunk of claudeStream) {
|
||||
if (chunk.type === "message_stop") {
|
||||
dataCallback({
|
||||
type: "chat",
|
||||
data: {
|
||||
choices: [
|
||||
{
|
||||
delta: { content: "" },
|
||||
logprobs: null,
|
||||
finish_reason: "stop",
|
||||
},
|
||||
],
|
||||
},
|
||||
});
|
||||
break;
|
||||
}
|
||||
dataCallback({ type: "chat", data: chunk });
|
||||
}
|
||||
}
|
||||
static async handleClaudeStream(
|
||||
param: {
|
||||
openai: OpenAI;
|
||||
systemPrompt: any;
|
||||
preprocessedContext: ModelSnapshotType2<
|
||||
ModelPropertiesDeclarationToProperties<{
|
||||
role: ISimpleType<UnionStringArray<string[]>>;
|
||||
content: ISimpleType<unknown>;
|
||||
}>,
|
||||
_NotCustomized
|
||||
>;
|
||||
maxTokens: unknown | number | undefined;
|
||||
messages: any;
|
||||
model: string;
|
||||
env: Env;
|
||||
},
|
||||
dataCallback: (data) => void,
|
||||
) {
|
||||
const {
|
||||
preprocessedContext,
|
||||
messages,
|
||||
env,
|
||||
maxTokens,
|
||||
systemPrompt,
|
||||
model,
|
||||
} = param;
|
||||
|
||||
const assistantPrompt = ChatSdk.buildAssistantPrompt({
|
||||
maxTokens: maxTokens,
|
||||
});
|
||||
|
||||
const safeMessages = ChatSdk.buildMessageChain(messages, {
|
||||
systemPrompt: systemPrompt,
|
||||
model,
|
||||
assistantPrompt,
|
||||
toolResults: preprocessedContext,
|
||||
});
|
||||
|
||||
const anthropic = new Anthropic({
|
||||
apiKey: env.ANTHROPIC_API_KEY,
|
||||
});
|
||||
|
||||
return ClaudeChatSdk.streamClaudeResponse(
|
||||
safeMessages,
|
||||
{
|
||||
model: param.model,
|
||||
maxTokens: param.maxTokens,
|
||||
anthropic: anthropic,
|
||||
},
|
||||
dataCallback,
|
||||
);
|
||||
}
|
||||
}
|
@@ -1,174 +0,0 @@
|
||||
import { OpenAI } from "openai";
|
||||
import {
|
||||
_NotCustomized,
|
||||
ISimpleType,
|
||||
ModelPropertiesDeclarationToProperties,
|
||||
ModelSnapshotType2,
|
||||
UnionStringArray,
|
||||
} from "mobx-state-tree";
|
||||
import ChatSdk from "../chat-sdk";
|
||||
|
||||
export class CloudflareAISdk {
|
||||
static async handleCloudflareAIStream(
|
||||
param: {
|
||||
openai: OpenAI;
|
||||
systemPrompt: any;
|
||||
preprocessedContext: ModelSnapshotType2<
|
||||
ModelPropertiesDeclarationToProperties<{
|
||||
role: ISimpleType<UnionStringArray<string[]>>;
|
||||
content: ISimpleType<unknown>;
|
||||
}>,
|
||||
_NotCustomized
|
||||
>;
|
||||
maxTokens: unknown | number | undefined;
|
||||
messages: any;
|
||||
model: string;
|
||||
env: Env;
|
||||
},
|
||||
dataCallback: (data) => void,
|
||||
) {
|
||||
const {
|
||||
preprocessedContext,
|
||||
messages,
|
||||
env,
|
||||
maxTokens,
|
||||
systemPrompt,
|
||||
model,
|
||||
} = param;
|
||||
|
||||
const assistantPrompt = ChatSdk.buildAssistantPrompt({
|
||||
maxTokens: maxTokens,
|
||||
});
|
||||
const safeMessages = ChatSdk.buildMessageChain(messages, {
|
||||
systemPrompt: systemPrompt,
|
||||
model,
|
||||
assistantPrompt,
|
||||
toolResults: preprocessedContext,
|
||||
});
|
||||
|
||||
const cfAiURL = `https://api.cloudflare.com/client/v4/accounts/${env.CLOUDFLARE_ACCOUNT_ID}/ai/v1`;
|
||||
|
||||
console.log({ cfAiURL });
|
||||
const openai = new OpenAI({
|
||||
apiKey: env.CLOUDFLARE_API_KEY,
|
||||
baseURL: cfAiURL,
|
||||
});
|
||||
|
||||
return CloudflareAISdk.streamCloudflareAIResponse(
|
||||
safeMessages,
|
||||
{
|
||||
model: param.model,
|
||||
maxTokens: param.maxTokens,
|
||||
openai: openai,
|
||||
},
|
||||
dataCallback,
|
||||
);
|
||||
}
|
||||
private static async streamCloudflareAIResponse(
|
||||
messages: any[],
|
||||
opts: {
|
||||
model: string;
|
||||
maxTokens: number | unknown | undefined;
|
||||
openai: OpenAI;
|
||||
},
|
||||
dataCallback: (data: any) => void,
|
||||
) {
|
||||
const tuningParams: Record<string, any> = {};
|
||||
|
||||
const llamaTuningParams = {
|
||||
temperature: 0.86,
|
||||
top_p: 0.98,
|
||||
presence_penalty: 0.1,
|
||||
frequency_penalty: 0.3,
|
||||
max_tokens: opts.maxTokens,
|
||||
};
|
||||
|
||||
const getLlamaTuningParams = () => {
|
||||
return llamaTuningParams;
|
||||
};
|
||||
|
||||
let modelPrefix = `@cf/meta`;
|
||||
|
||||
if (opts.model.toLowerCase().includes("llama")) {
|
||||
modelPrefix = `@cf/meta`;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("hermes-2-pro-mistral-7b")) {
|
||||
modelPrefix = `@hf/nousresearch`;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("mistral-7b-instruct")) {
|
||||
modelPrefix = `@hf/mistral`;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("gemma")) {
|
||||
modelPrefix = `@cf/google`;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("deepseek")) {
|
||||
modelPrefix = `@cf/deepseek-ai`;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("openchat-3.5-0106")) {
|
||||
modelPrefix = `@cf/openchat`;
|
||||
}
|
||||
|
||||
const isNueralChat = opts.model
|
||||
.toLowerCase()
|
||||
.includes("neural-chat-7b-v3-1-awq");
|
||||
if (
|
||||
isNueralChat ||
|
||||
opts.model.toLowerCase().includes("openhermes-2.5-mistral-7b-awq") ||
|
||||
opts.model.toLowerCase().includes("zephyr-7b-beta-awq") ||
|
||||
opts.model.toLowerCase().includes("deepseek-coder-6.7b-instruct-awq")
|
||||
) {
|
||||
modelPrefix = `@hf/thebloke`;
|
||||
}
|
||||
|
||||
const generationParams: Record<string, any> = {
|
||||
model: `${modelPrefix}/${opts.model}`,
|
||||
messages: messages,
|
||||
stream: true,
|
||||
};
|
||||
|
||||
if (modelPrefix === "@cf/meta") {
|
||||
generationParams["max_tokens"] = 4096;
|
||||
}
|
||||
|
||||
if (modelPrefix === "@hf/mistral") {
|
||||
generationParams["max_tokens"] = 4096;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("hermes-2-pro-mistral-7b")) {
|
||||
generationParams["max_tokens"] = 1000;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("openhermes-2.5-mistral-7b-awq")) {
|
||||
generationParams["max_tokens"] = 1000;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("deepseek-coder-6.7b-instruct-awq")) {
|
||||
generationParams["max_tokens"] = 590;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("deepseek-math-7b-instruct")) {
|
||||
generationParams["max_tokens"] = 512;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("neural-chat-7b-v3-1-awq")) {
|
||||
generationParams["max_tokens"] = 590;
|
||||
}
|
||||
|
||||
if (opts.model.toLowerCase().includes("openchat-3.5-0106")) {
|
||||
generationParams["max_tokens"] = 2000;
|
||||
}
|
||||
|
||||
const cloudflareAiStream = await opts.openai.chat.completions.create({
|
||||
...generationParams,
|
||||
});
|
||||
|
||||
for await (const chunk of cloudflareAiStream) {
|
||||
dataCallback({ type: "chat", data: chunk });
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,93 +0,0 @@
|
||||
import { OpenAI } from "openai";
|
||||
import {
|
||||
_NotCustomized,
|
||||
castToSnapshot,
|
||||
getSnapshot,
|
||||
ISimpleType,
|
||||
ModelPropertiesDeclarationToProperties,
|
||||
ModelSnapshotType2,
|
||||
UnionStringArray,
|
||||
} from "mobx-state-tree";
|
||||
import Message from "../../models/Message";
|
||||
import { MarkdownSdk } from "../markdown-sdk";
|
||||
import ChatSdk from "../chat-sdk";
|
||||
|
||||
export class FireworksAiChatSdk {
|
||||
private static async streamFireworksResponse(
|
||||
messages: any[],
|
||||
opts: {
|
||||
model: string;
|
||||
maxTokens: number | unknown | undefined;
|
||||
openai: OpenAI;
|
||||
},
|
||||
dataCallback: (data: any) => void,
|
||||
) {
|
||||
let modelPrefix = "accounts/fireworks/models/";
|
||||
if (opts.model.toLowerCase().includes("yi-")) {
|
||||
modelPrefix = "accounts/yi-01-ai/models/";
|
||||
}
|
||||
|
||||
const fireworksStream = await opts.openai.chat.completions.create({
|
||||
model: `${modelPrefix}${opts.model}`,
|
||||
messages: messages,
|
||||
stream: true,
|
||||
});
|
||||
|
||||
for await (const chunk of fireworksStream) {
|
||||
dataCallback({ type: "chat", data: chunk });
|
||||
}
|
||||
}
|
||||
|
||||
static async handleFireworksStream(
|
||||
param: {
|
||||
openai: OpenAI;
|
||||
systemPrompt: any;
|
||||
preprocessedContext: ModelSnapshotType2<
|
||||
ModelPropertiesDeclarationToProperties<{
|
||||
role: ISimpleType<UnionStringArray<string[]>>;
|
||||
content: ISimpleType<unknown>;
|
||||
}>,
|
||||
_NotCustomized
|
||||
>;
|
||||
maxTokens: number;
|
||||
messages: any;
|
||||
model: any;
|
||||
env: Env;
|
||||
},
|
||||
dataCallback: (data) => void,
|
||||
) {
|
||||
const {
|
||||
preprocessedContext,
|
||||
messages,
|
||||
env,
|
||||
maxTokens,
|
||||
systemPrompt,
|
||||
model,
|
||||
} = param;
|
||||
|
||||
const assistantPrompt = ChatSdk.buildAssistantPrompt({
|
||||
maxTokens: maxTokens,
|
||||
});
|
||||
|
||||
const safeMessages = ChatSdk.buildMessageChain(messages, {
|
||||
systemPrompt: systemPrompt,
|
||||
model,
|
||||
assistantPrompt,
|
||||
toolResults: preprocessedContext,
|
||||
});
|
||||
|
||||
const fireworksOpenAIClient = new OpenAI({
|
||||
apiKey: param.env.FIREWORKS_API_KEY,
|
||||
baseURL: "https://api.fireworks.ai/inference/v1",
|
||||
});
|
||||
return FireworksAiChatSdk.streamFireworksResponse(
|
||||
safeMessages,
|
||||
{
|
||||
model: param.model,
|
||||
maxTokens: param.maxTokens,
|
||||
openai: fireworksOpenAIClient,
|
||||
},
|
||||
dataCallback,
|
||||
);
|
||||
}
|
||||
}
|
@@ -1,97 +0,0 @@
|
||||
import { OpenAI } from "openai";
|
||||
import ChatSdk from "../chat-sdk";
|
||||
import { StreamParams } from "../../services/ChatService";
|
||||
|
||||
export class GoogleChatSdk {
|
||||
static async handleGoogleStream(
|
||||
param: StreamParams,
|
||||
dataCallback: (data) => void,
|
||||
) {
|
||||
const {
|
||||
preprocessedContext,
|
||||
messages,
|
||||
env,
|
||||
maxTokens,
|
||||
systemPrompt,
|
||||
model,
|
||||
} = param;
|
||||
|
||||
const assistantPrompt = ChatSdk.buildAssistantPrompt({
|
||||
maxTokens: maxTokens,
|
||||
});
|
||||
|
||||
const safeMessages = ChatSdk.buildMessageChain(messages, {
|
||||
systemPrompt: systemPrompt,
|
||||
model,
|
||||
assistantPrompt,
|
||||
toolResults: preprocessedContext,
|
||||
});
|
||||
|
||||
const openai = new OpenAI({
|
||||
baseURL: "https://generativelanguage.googleapis.com/v1beta/openai",
|
||||
apiKey: param.env.GEMINI_API_KEY,
|
||||
});
|
||||
|
||||
return GoogleChatSdk.streamGoogleResponse(
|
||||
safeMessages,
|
||||
{
|
||||
model: param.model,
|
||||
maxTokens: param.maxTokens,
|
||||
openai: openai,
|
||||
},
|
||||
dataCallback,
|
||||
);
|
||||
}
|
||||
private static async streamGoogleResponse(
|
||||
messages: any[],
|
||||
opts: {
|
||||
model: string;
|
||||
maxTokens: number | unknown | undefined;
|
||||
openai: OpenAI;
|
||||
},
|
||||
dataCallback: (data: any) => void,
|
||||
) {
|
||||
const chatReq = JSON.stringify({
|
||||
model: opts.model,
|
||||
messages: messages,
|
||||
stream: true,
|
||||
});
|
||||
|
||||
const googleStream = await opts.openai.chat.completions.create(
|
||||
JSON.parse(chatReq),
|
||||
);
|
||||
|
||||
for await (const chunk of googleStream) {
|
||||
console.log(JSON.stringify(chunk));
|
||||
|
||||
if (chunk.choices?.[0]?.finishReason === "stop") {
|
||||
dataCallback({
|
||||
type: "chat",
|
||||
data: {
|
||||
choices: [
|
||||
{
|
||||
delta: { content: chunk.choices[0].delta.content || "" },
|
||||
finish_reason: "stop",
|
||||
index: chunk.choices[0].index,
|
||||
},
|
||||
],
|
||||
},
|
||||
});
|
||||
break;
|
||||
} else {
|
||||
dataCallback({
|
||||
type: "chat",
|
||||
data: {
|
||||
choices: [
|
||||
{
|
||||
delta: { content: chunk.choices?.[0]?.delta?.content || "" },
|
||||
finish_reason: null,
|
||||
index: chunk.choices?.[0]?.index || 0,
|
||||
},
|
||||
],
|
||||
},
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,99 +0,0 @@
|
||||
import { OpenAI } from "openai";
|
||||
import {
|
||||
_NotCustomized,
|
||||
ISimpleType,
|
||||
ModelPropertiesDeclarationToProperties,
|
||||
ModelSnapshotType2,
|
||||
UnionStringArray,
|
||||
} from "mobx-state-tree";
|
||||
import ChatSdk from "../chat-sdk";
|
||||
|
||||
export class GroqChatSdk {
|
||||
static async handleGroqStream(
|
||||
param: {
|
||||
openai: OpenAI;
|
||||
systemPrompt: any;
|
||||
preprocessedContext: ModelSnapshotType2<
|
||||
ModelPropertiesDeclarationToProperties<{
|
||||
role: ISimpleType<UnionStringArray<string[]>>;
|
||||
content: ISimpleType<unknown>;
|
||||
}>,
|
||||
_NotCustomized
|
||||
>;
|
||||
maxTokens: unknown | number | undefined;
|
||||
messages: any;
|
||||
model: string;
|
||||
env: Env;
|
||||
},
|
||||
dataCallback: (data) => void,
|
||||
) {
|
||||
const {
|
||||
preprocessedContext,
|
||||
messages,
|
||||
env,
|
||||
maxTokens,
|
||||
systemPrompt,
|
||||
model,
|
||||
} = param;
|
||||
|
||||
const assistantPrompt = ChatSdk.buildAssistantPrompt({
|
||||
maxTokens: maxTokens,
|
||||
});
|
||||
const safeMessages = ChatSdk.buildMessageChain(messages, {
|
||||
systemPrompt: systemPrompt,
|
||||
model,
|
||||
assistantPrompt,
|
||||
toolResults: preprocessedContext,
|
||||
});
|
||||
|
||||
const openai = new OpenAI({
|
||||
baseURL: "https://api.groq.com/openai/v1",
|
||||
apiKey: param.env.GROQ_API_KEY,
|
||||
});
|
||||
|
||||
return GroqChatSdk.streamGroqResponse(
|
||||
safeMessages,
|
||||
{
|
||||
model: param.model,
|
||||
maxTokens: param.maxTokens,
|
||||
openai: openai,
|
||||
},
|
||||
dataCallback,
|
||||
);
|
||||
}
|
||||
private static async streamGroqResponse(
|
||||
messages: any[],
|
||||
opts: {
|
||||
model: string;
|
||||
maxTokens: number | unknown | undefined;
|
||||
openai: OpenAI;
|
||||
},
|
||||
dataCallback: (data: any) => void,
|
||||
) {
|
||||
const tuningParams: Record<string, any> = {};
|
||||
|
||||
const llamaTuningParams = {
|
||||
temperature: 0.86,
|
||||
top_p: 0.98,
|
||||
presence_penalty: 0.1,
|
||||
frequency_penalty: 0.3,
|
||||
max_tokens: opts.maxTokens,
|
||||
};
|
||||
|
||||
const getLlamaTuningParams = () => {
|
||||
return llamaTuningParams;
|
||||
};
|
||||
|
||||
const groqStream = await opts.openai.chat.completions.create({
|
||||
model: opts.model,
|
||||
messages: messages,
|
||||
frequency_penalty: 2,
|
||||
stream: true,
|
||||
temperature: 0.78,
|
||||
});
|
||||
|
||||
for await (const chunk of groqStream) {
|
||||
dataCallback({ type: "chat", data: chunk });
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,95 +0,0 @@
|
||||
import { OpenAI } from "openai";
|
||||
import ChatSdk from "../chat-sdk";
|
||||
|
||||
export class OpenAiChatSdk {
|
||||
static async handleOpenAiStream(
|
||||
ctx: {
|
||||
openai: OpenAI;
|
||||
systemPrompt: any;
|
||||
preprocessedContext: any;
|
||||
maxTokens: unknown | number | undefined;
|
||||
messages: any;
|
||||
model: any;
|
||||
},
|
||||
dataCallback: (data: any) => any,
|
||||
) {
|
||||
const {
|
||||
openai,
|
||||
systemPrompt,
|
||||
maxTokens,
|
||||
messages,
|
||||
model,
|
||||
preprocessedContext,
|
||||
} = ctx;
|
||||
|
||||
if (!messages?.length) {
|
||||
return new Response("No messages provided", { status: 400 });
|
||||
}
|
||||
|
||||
const assistantPrompt = ChatSdk.buildAssistantPrompt({
|
||||
maxTokens: maxTokens,
|
||||
});
|
||||
const safeMessages = ChatSdk.buildMessageChain(messages, {
|
||||
systemPrompt: systemPrompt,
|
||||
model,
|
||||
assistantPrompt,
|
||||
toolResults: preprocessedContext,
|
||||
});
|
||||
|
||||
return OpenAiChatSdk.streamOpenAiResponse(
|
||||
safeMessages,
|
||||
{
|
||||
model,
|
||||
maxTokens: maxTokens as number,
|
||||
openai: openai,
|
||||
},
|
||||
dataCallback,
|
||||
);
|
||||
}
|
||||
|
||||
private static async streamOpenAiResponse(
|
||||
messages: any[],
|
||||
opts: {
|
||||
model: string;
|
||||
maxTokens: number | undefined;
|
||||
openai: OpenAI;
|
||||
},
|
||||
dataCallback: (data: any) => any,
|
||||
) {
|
||||
const isO1 = () => {
|
||||
if (opts.model === "o1-preview" || opts.model === "o1-mini") {
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
const tuningParams: Record<string, any> = {};
|
||||
|
||||
const gpt4oTuningParams = {
|
||||
temperature: 0.86,
|
||||
top_p: 0.98,
|
||||
presence_penalty: 0.1,
|
||||
frequency_penalty: 0.3,
|
||||
max_tokens: opts.maxTokens,
|
||||
};
|
||||
|
||||
const getTuningParams = () => {
|
||||
if (isO1()) {
|
||||
tuningParams["temperature"] = 1;
|
||||
tuningParams["max_completion_tokens"] = opts.maxTokens + 10000;
|
||||
return tuningParams;
|
||||
}
|
||||
return gpt4oTuningParams;
|
||||
};
|
||||
|
||||
const openAIStream = await opts.openai.chat.completions.create({
|
||||
model: opts.model,
|
||||
messages: messages,
|
||||
stream: true,
|
||||
...getTuningParams(),
|
||||
});
|
||||
|
||||
for await (const chunk of openAIStream) {
|
||||
dataCallback({ type: "chat", data: chunk });
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,114 +0,0 @@
|
||||
import { OpenAI } from "openai";
|
||||
import ChatSdk from "../chat-sdk";
|
||||
|
||||
export class XaiChatSdk {
|
||||
static async handleXaiStream(
|
||||
ctx: {
|
||||
openai: OpenAI;
|
||||
systemPrompt: any;
|
||||
preprocessedContext: any;
|
||||
maxTokens: unknown | number | undefined;
|
||||
messages: any;
|
||||
disableWebhookGeneration: boolean;
|
||||
model: any;
|
||||
env: Env;
|
||||
},
|
||||
dataCallback: (data: any) => any,
|
||||
) {
|
||||
const {
|
||||
openai,
|
||||
systemPrompt,
|
||||
maxTokens,
|
||||
messages,
|
||||
env,
|
||||
model,
|
||||
preprocessedContext,
|
||||
} = ctx;
|
||||
|
||||
if (!messages?.length) {
|
||||
return new Response("No messages provided", { status: 400 });
|
||||
}
|
||||
|
||||
const getMaxTokens = async (mt) => {
|
||||
if (mt) {
|
||||
return await ChatSdk.calculateMaxTokens(
|
||||
JSON.parse(JSON.stringify(messages)),
|
||||
{
|
||||
env,
|
||||
maxTokens: mt,
|
||||
},
|
||||
);
|
||||
} else {
|
||||
return undefined;
|
||||
}
|
||||
};
|
||||
|
||||
const assistantPrompt = ChatSdk.buildAssistantPrompt({
|
||||
maxTokens: maxTokens,
|
||||
});
|
||||
|
||||
const safeMessages = ChatSdk.buildMessageChain(messages, {
|
||||
systemPrompt: systemPrompt,
|
||||
model,
|
||||
assistantPrompt,
|
||||
toolResults: preprocessedContext,
|
||||
});
|
||||
|
||||
const xAiClient = new OpenAI({
|
||||
baseURL: "https://api.x.ai/v1",
|
||||
apiKey: env.XAI_API_KEY,
|
||||
});
|
||||
|
||||
return XaiChatSdk.streamOpenAiResponse(
|
||||
safeMessages,
|
||||
{
|
||||
model,
|
||||
maxTokens: maxTokens as number,
|
||||
openai: xAiClient,
|
||||
},
|
||||
dataCallback,
|
||||
);
|
||||
}
|
||||
|
||||
private static async streamOpenAiResponse(
|
||||
messages: any[],
|
||||
opts: {
|
||||
model: string;
|
||||
maxTokens: number | undefined;
|
||||
openai: OpenAI;
|
||||
},
|
||||
dataCallback: (data: any) => any,
|
||||
) {
|
||||
const isO1 = () => {
|
||||
if (opts.model === "o1-preview" || opts.model === "o1-mini") {
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
const tuningParams: Record<string, any> = {};
|
||||
|
||||
const gpt4oTuningParams = {
|
||||
temperature: 0.75,
|
||||
};
|
||||
|
||||
const getTuningParams = () => {
|
||||
if (isO1()) {
|
||||
tuningParams["temperature"] = 1;
|
||||
tuningParams["max_completion_tokens"] = opts.maxTokens + 10000;
|
||||
return tuningParams;
|
||||
}
|
||||
return gpt4oTuningParams;
|
||||
};
|
||||
|
||||
const xAIStream = await opts.openai.chat.completions.create({
|
||||
model: opts.model,
|
||||
messages: messages,
|
||||
stream: true,
|
||||
...getTuningParams(),
|
||||
});
|
||||
|
||||
for await (const chunk of xAIStream) {
|
||||
dataCallback({ type: "chat", data: chunk });
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,97 +0,0 @@
|
||||
export interface AdvancedSearchParams {
|
||||
mainQuery?: string;
|
||||
titleQuery?: string;
|
||||
descriptionQuery?: string;
|
||||
contentQuery?: string;
|
||||
mustInclude?: string[];
|
||||
mustNotInclude?: string[];
|
||||
exactPhrases?: string[];
|
||||
urlContains?: string;
|
||||
}
|
||||
|
||||
export class PerigonSearchBuilder {
|
||||
private buildExactPhraseQuery(phrases: string[]): string {
|
||||
return phrases.map((phrase) => `"${phrase}"`).join(" AND ");
|
||||
}
|
||||
|
||||
private buildMustIncludeQuery(terms: string[]): string {
|
||||
return terms.join(" AND ");
|
||||
}
|
||||
|
||||
private buildMustNotIncludeQuery(terms: string[]): string {
|
||||
return terms.map((term) => `NOT ${term}`).join(" AND ");
|
||||
}
|
||||
|
||||
buildSearchParams(params: AdvancedSearchParams): SearchParams {
|
||||
const searchParts: string[] = [];
|
||||
const searchParams: SearchParams = {};
|
||||
|
||||
if (params.mainQuery) {
|
||||
searchParams.q = params.mainQuery;
|
||||
}
|
||||
|
||||
if (params.titleQuery) {
|
||||
searchParams.title = params.titleQuery;
|
||||
}
|
||||
|
||||
if (params.descriptionQuery) {
|
||||
searchParams.desc = params.descriptionQuery;
|
||||
}
|
||||
|
||||
if (params.contentQuery) {
|
||||
searchParams.content = params.contentQuery;
|
||||
}
|
||||
|
||||
if (params.exactPhrases?.length) {
|
||||
searchParts.push(this.buildExactPhraseQuery(params.exactPhrases));
|
||||
}
|
||||
|
||||
if (params.mustInclude?.length) {
|
||||
searchParts.push(this.buildMustIncludeQuery(params.mustInclude));
|
||||
}
|
||||
|
||||
if (params.mustNotInclude?.length) {
|
||||
searchParts.push(this.buildMustNotIncludeQuery(params.mustNotInclude));
|
||||
}
|
||||
|
||||
if (searchParts.length) {
|
||||
searchParams.q = searchParams.q
|
||||
? `(${searchParams.q}) AND (${searchParts.join(" AND ")})`
|
||||
: searchParts.join(" AND ");
|
||||
}
|
||||
|
||||
if (params.urlContains) {
|
||||
searchParams.url = `"${params.urlContains}"`;
|
||||
}
|
||||
|
||||
return searchParams;
|
||||
}
|
||||
}
|
||||
|
||||
export interface SearchParams {
|
||||
/** Main search query parameter that searches across title, description and content */
|
||||
q?: string;
|
||||
/** Search only in article titles */
|
||||
title?: string;
|
||||
/** Search only in article descriptions */
|
||||
desc?: string;
|
||||
/** Search only in article content */
|
||||
content?: string;
|
||||
/** Search in article URLs */
|
||||
url?: string;
|
||||
/** Additional search parameters can be added here as needed */
|
||||
[key: string]: string | undefined;
|
||||
}
|
||||
|
||||
export interface Article {
|
||||
translation: {
|
||||
title: string;
|
||||
description: string;
|
||||
content: string;
|
||||
url: string;
|
||||
};
|
||||
}
|
||||
|
||||
export interface SearchResponse {
|
||||
articles?: Article[];
|
||||
}
|
@@ -1,38 +0,0 @@
|
||||
export class StreamProcessorSdk {
|
||||
static preprocessContent(buffer: string): string {
|
||||
return buffer
|
||||
.replace(/(\n\- .*\n)+/g, "$&\n")
|
||||
.replace(/(\n\d+\. .*\n)+/g, "$&\n")
|
||||
.replace(/\n{3,}/g, "\n\n");
|
||||
}
|
||||
|
||||
static async handleStreamProcessing(
|
||||
stream: any,
|
||||
controller: ReadableStreamDefaultController,
|
||||
) {
|
||||
const encoder = new TextEncoder();
|
||||
let buffer = "";
|
||||
|
||||
try {
|
||||
for await (const chunk of stream) {
|
||||
const content = chunk.choices[0]?.delta?.content || "";
|
||||
buffer += content;
|
||||
|
||||
let processedContent = StreamProcessorSdk.preprocessContent(buffer);
|
||||
controller.enqueue(encoder.encode(processedContent));
|
||||
|
||||
buffer = "";
|
||||
}
|
||||
|
||||
if (buffer) {
|
||||
let processedContent = StreamProcessorSdk.preprocessContent(buffer);
|
||||
controller.enqueue(encoder.encode(processedContent));
|
||||
}
|
||||
} catch (error) {
|
||||
controller.error(error);
|
||||
throw new Error("Stream processing error");
|
||||
} finally {
|
||||
controller.close();
|
||||
}
|
||||
}
|
||||
}
|
@@ -1,4 +1,4 @@
|
||||
export class Sdk {
|
||||
export class Utils {
|
||||
static getSeason(date: string): string {
|
||||
const hemispheres = {
|
||||
Northern: ["Winter", "Spring", "Summer", "Autumn"],
|
Reference in New Issue
Block a user