enables deep research
This commit is contained in:

committed by
Geoff Seemueller

parent
805b524471
commit
2e45c6b67b
@@ -1,7 +1,7 @@
|
||||
import {task, entrypoint, interrupt, MemorySaver} from "@langchain/langgraph"
|
||||
import {entrypoint, InMemoryStore, MemorySaver, task} from "@langchain/langgraph"
|
||||
import "./tools/searxng.genai.mjs"
|
||||
import {SearxngClient} from "@agentic/searxng";
|
||||
|
||||
import ky from "ky";
|
||||
|
||||
script({
|
||||
title: "Deep Research Program",
|
||||
@@ -15,6 +15,7 @@ const {output, vars} = env
|
||||
const breakdownResearch = task(
|
||||
"breakdown_research",
|
||||
async (question: string) => {
|
||||
output.log("Breaking down question:", question);
|
||||
const result = await runPrompt(
|
||||
async (ctx) => {
|
||||
ctx.$`You are an expert research strategist.
|
||||
@@ -51,39 +52,44 @@ Output the breakdown as a JSON object.`
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
output.fence(result.json, "json");
|
||||
return result.json
|
||||
}
|
||||
)
|
||||
|
||||
const globalCtx = this;
|
||||
|
||||
|
||||
const researchSubQuestion = task(
|
||||
"research_subquestion",
|
||||
async (subQuestion: { id: string; question: string }) => {
|
||||
output.log(`Researching sub-question: ${subQuestion.question}`);
|
||||
const kyWithHeaders = ky.create({
|
||||
referrerPolicy: "unsafe-url",
|
||||
|
||||
const searxng = new SearxngClient({apiBaseUrl: "https://search-engine-gsio.fly.dev"});
|
||||
headers: {
|
||||
'Authorization': 'Basic ' + btoa(`admin:${process.env.SEARXNG_PASSWORD}`),
|
||||
}
|
||||
});
|
||||
|
||||
const {text} = await runPrompt(
|
||||
const searxng = new SearxngClient({ky: kyWithHeaders});
|
||||
|
||||
const {json} = await runPrompt(
|
||||
(_) => {
|
||||
_.defTool(searxng)
|
||||
_.$`You are an expert researcher with access to comprehensive information.
|
||||
|
||||
Task: Thoroughly research the following question and provide a detailed answer.
|
||||
Task: Thoroughly research the following question and create a JSON formatted response.
|
||||
|
||||
Question ID: ${subQuestion.id}
|
||||
Question: ${subQuestion.question}
|
||||
|
||||
Provide your findings in a structured format that includes:
|
||||
- Your answer to the sub-question
|
||||
- Relevant sources that support your answer
|
||||
- Your confidence level in the answer (0-1)`
|
||||
Respond with the specified JSON format.
|
||||
`
|
||||
},
|
||||
{
|
||||
model: "small",
|
||||
label: `research subquestion ${subQuestion.id}`,
|
||||
maxDataRepairs: 2,
|
||||
responseType: "json_object",
|
||||
responseSchema: {
|
||||
type: "object",
|
||||
properties: {
|
||||
@@ -105,19 +111,20 @@ Provide your findings in a structured format that includes:
|
||||
},
|
||||
}
|
||||
)
|
||||
return text
|
||||
output.fence(json, "json");
|
||||
return json
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
const synthesizeFindings = task(
|
||||
"synthesize_findings",
|
||||
async (mainQuestion: string, findings: any[]) => {
|
||||
output.log(`Synthesizing Findings: ${JSON.stringify(findings, null, 2)}`);
|
||||
const result = await runPrompt(
|
||||
async (ctx) => {
|
||||
ctx.$`You are an expert research synthesizer.
|
||||
|
||||
Task: Synthesize the following research findings into a coherent response to the main research question.
|
||||
Task: Synthesize the following research findings into a JSON object to answer the main research question.
|
||||
|
||||
Main Research Question: ${mainQuestion}
|
||||
|
||||
@@ -128,11 +135,14 @@ Provide a synthesis that:
|
||||
1. Directly answers the main research question
|
||||
2. Integrates the findings from all sub-questions
|
||||
3. Identifies limitations in the current research
|
||||
4. Suggests next steps for further investigation`
|
||||
4. Suggests next steps for further investigation
|
||||
|
||||
Respond in the specified JSON format.`
|
||||
},
|
||||
{
|
||||
label: "synthesize findings",
|
||||
responseType: "markdown",
|
||||
responseType: "json_object",
|
||||
maxDataRepairs: 2,
|
||||
responseSchema: {
|
||||
type: "object",
|
||||
properties: {
|
||||
@@ -147,15 +157,15 @@ Provide a synthesis that:
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
output.fence(result.json, "json");
|
||||
return result.json
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
const summarizeAndIdentifyGaps = task(
|
||||
"summarize_and_identify_gaps",
|
||||
{name: "summarize_and_identify_gaps"},
|
||||
async (synthesis: any, findings: any[]) => {
|
||||
output.log(`Summarizing and identifying gaps: ${JSON.stringify(findings, null, 2)}`);
|
||||
const result = await runPrompt(
|
||||
async (ctx) => {
|
||||
ctx.$`You are an expert research evaluator.
|
||||
@@ -171,10 +181,13 @@ ${JSON.stringify(findings, null, 2)}
|
||||
Please provide:
|
||||
1. A concise summary of current findings
|
||||
2. Identify 2-3 specific knowledge gaps
|
||||
3. Formulate follow-up questions to address these gaps`
|
||||
3. Formulate follow-up questions to address these gaps
|
||||
|
||||
Respond using the specified JSON schema.`
|
||||
},
|
||||
{
|
||||
label: "identify research gaps",
|
||||
maxDataRepairs: 2,
|
||||
responseSchema: {
|
||||
type: "object",
|
||||
properties: {
|
||||
@@ -197,27 +210,28 @@ Please provide:
|
||||
},
|
||||
}
|
||||
)
|
||||
output.fence(result.json, "json");
|
||||
return result.json
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
// Research Workflow
|
||||
const researchWorkflow = entrypoint(
|
||||
{checkpointer: new MemorySaver(), name: "research_workflow"},
|
||||
{checkpointer: new MemorySaver(), name: "research_workflow", store: new InMemoryStore() },
|
||||
async (input: { question: string; context?: string }) => {
|
||||
|
||||
output.log(`Deep research initiated`);
|
||||
// Step 1: Break down the research question
|
||||
const breakdown = await breakdownResearch(input.question)
|
||||
|
||||
|
||||
// Step 2: Research each sub-question in parallel
|
||||
const subQuestionFindings = []
|
||||
// handle both subQuestions and sub_questions, since the API returns one or the other
|
||||
const subquestions = breakdown?.sub_questions ? breakdown.sub_questions : breakdown.subQuestions;
|
||||
const forSq = await Promise.all(subquestions.map(async (q) => await researchSubQuestion(q)));
|
||||
forSq.map(subQuestionFindings.push)
|
||||
|
||||
for (const sq of breakdown.subQuestions) {
|
||||
const analysis = await researchSubQuestion(sq);
|
||||
console.log(analysis);
|
||||
subQuestionFindings.push(analysis);
|
||||
}
|
||||
|
||||
|
||||
// Step 3: Synthesize the findings
|
||||
let synthesis = await synthesizeFindings(
|
||||
input.question,
|
||||
subQuestionFindings
|
||||
@@ -228,22 +242,21 @@ const researchWorkflow = entrypoint(
|
||||
subQuestionFindings
|
||||
)
|
||||
|
||||
|
||||
// Step 5: Conduct follow-up research on identified gaps
|
||||
const followUpFindings = [];
|
||||
for (const fq of gapAnalysis.followUpQuestions) {
|
||||
const anwser = await researchSubQuestion(fq);
|
||||
console.log(anwser);
|
||||
followUpFindings.push(anwser);
|
||||
}
|
||||
|
||||
|
||||
// Step 6: Final synthesis with deep research
|
||||
const allFindings = [...subQuestionFindings, ...followUpFindings]
|
||||
const finalSynthesis = await synthesizeFindings(
|
||||
input.question,
|
||||
allFindings
|
||||
)
|
||||
|
||||
|
||||
return {
|
||||
question: input.question,
|
||||
breakdown: breakdown,
|
||||
@@ -255,27 +268,26 @@ const researchWorkflow = entrypoint(
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
const researchQuestion =
|
||||
env.vars.question ||
|
||||
"What are the most promising approaches to climate change mitigation?"
|
||||
|
||||
|
||||
// An arbitrary ID locked to this workflow run
|
||||
const threadId = `research-${Date.now()}`
|
||||
|
||||
const options = {
|
||||
configurable: {thread_id: threadId},
|
||||
};
|
||||
|
||||
const config = {
|
||||
configurable: {
|
||||
thread_id: threadId,
|
||||
},
|
||||
}
|
||||
const researchQuestion = env.vars.user_input;
|
||||
|
||||
const inputs = {
|
||||
question: researchQuestion,
|
||||
context: vars.context || "",
|
||||
};
|
||||
|
||||
// Execute workflow. Checkpoints are manually sent across the wire in the tasks.
|
||||
const results = await researchWorkflow.invoke(
|
||||
inputs,
|
||||
{
|
||||
question: researchQuestion,
|
||||
context: vars.context || "",
|
||||
},
|
||||
config
|
||||
...options,
|
||||
}
|
||||
)
|
||||
output.fence(results, "json")
|
||||
|
||||
env.output.fence(results)
|
Reference in New Issue
Block a user