Files
open-web-agent-rs/crates/local_inference_engine/src/text_generation.rs
2025-06-05 22:42:17 -04:00

277 lines
10 KiB
Rust

use anyhow::{Error as E, Result};
use candle_core::{DType, Device, Tensor};
use candle_transformers::generation::LogitsProcessor;
use tokenizers::Tokenizer;
use std::io::Write;
use crate::model::Model;
use crate::token_output_stream::TokenOutputStream;
pub struct TextGeneration {
model: Model,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
pub fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}
// Run text generation and print to stdout
pub fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("<eos>") {
Some(token) => token,
None => anyhow::bail!("cannot find the <eos> token"),
};
let eot_token = match self.tokenizer.get_token("<end_of_turn>") {
Some(token) => token,
None => {
println!(
"Warning: <end_of_turn> token not found in tokenizer, using <eos> as a backup"
);
eos_token
}
};
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, start_pos)?;
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
// Manual implementation of repeat penalty to avoid type conflicts
let mut logits_vec = logits.to_vec1::<f32>()?;
for &token_id in &tokens[start_at..] {
let token_id = token_id as usize;
if token_id < logits_vec.len() {
let score = logits_vec[token_id];
let sign = if score < 0.0 { -1.0 } else { 1.0 };
logits_vec[token_id] = sign * score / self.repeat_penalty;
}
}
// Create a new tensor with the modified logits
let device = logits.device().clone();
let shape = logits.shape().clone();
let new_logits = Tensor::new(&logits_vec[..], &device)?;
new_logits.reshape(shape)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token || next_token == eot_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
// Run text generation and write to a buffer
pub fn run_with_output(&mut self, prompt: &str, sample_len: usize, output: &mut Vec<u8>) -> Result<()> {
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
// Write prompt tokens to output
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
write!(output, "{}", t)?;
}
}
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("<eos>") {
Some(token) => token,
None => anyhow::bail!("cannot find the <eos> token"),
};
let eot_token = match self.tokenizer.get_token("<end_of_turn>") {
Some(token) => token,
None => {
write!(output, "Warning: <end_of_turn> token not found in tokenizer, using <eos> as a backup")?;
eos_token
}
};
// Determine if we're using a Model3 (gemma-3) variant
let is_model3 = match &self.model {
Model::V3(_) => true,
_ => false,
};
// For Model3, we need to use a different approach
if is_model3 {
// For gemma-3 models, we'll generate one token at a time with the full context
let start_gen = std::time::Instant::now();
// Initial generation with the full prompt
let input = Tensor::new(tokens.as_slice(), &self.device)?.unsqueeze(0)?;
let mut logits = self.model.forward(&input, 0)?;
logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
for _ in 0..sample_len {
// Apply repeat penalty if needed
let current_logits = if self.repeat_penalty == 1. {
logits.clone()
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
// Manual implementation of repeat penalty to avoid type conflicts
let mut logits_vec = logits.to_vec1::<f32>()?;
for &token_id in &tokens[start_at..] {
let token_id = token_id as usize;
if token_id < logits_vec.len() {
let score = logits_vec[token_id];
let sign = if score < 0.0 { -1.0 } else { 1.0 };
logits_vec[token_id] = sign * score / self.repeat_penalty;
}
}
// Create a new tensor with the modified logits
let device = logits.device().clone();
let shape = logits.shape().clone();
let new_logits = Tensor::new(&logits_vec[..], &device)?;
new_logits.reshape(shape)?
};
let next_token = self.logits_processor.sample(&current_logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token || next_token == eot_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
write!(output, "{}", t)?;
}
// For the next iteration, just use the new token
let new_input = Tensor::new(&[next_token], &self.device)?.unsqueeze(0)?;
logits = self.model.forward(&new_input, tokens.len() - 1)?;
logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
}
return Ok(());
}
// Standard approach for other models
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, start_pos)?;
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
// Manual implementation of repeat penalty to avoid type conflicts
let mut logits_vec = logits.to_vec1::<f32>()?;
for &token_id in &tokens[start_at..] {
let token_id = token_id as usize;
if token_id < logits_vec.len() {
let score = logits_vec[token_id];
let sign = if score < 0.0 { -1.0 } else { 1.0 };
logits_vec[token_id] = sign * score / self.repeat_penalty;
}
}
// Create a new tensor with the modified logits
let device = logits.device().clone();
let shape = logits.shape().clone();
let new_logits = Tensor::new(&logits_vec[..], &device)?;
new_logits.reshape(shape)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token || next_token == eot_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
write!(output, "{}", t)?;
}
}
// Write any remaining tokens
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
write!(output, "{}", rest)?;
}
Ok(())
}
}