supports small llama and gemma models

Refactor inference

dedicated crates for llama and gemma inferencing, not integrated
This commit is contained in:
geoffsee
2025-08-29 18:15:29 -04:00
parent d06b16bb12
commit 315ef17605
26 changed files with 2136 additions and 1402 deletions

View File

@@ -0,0 +1,28 @@
[package]
name = "gemma-runner"
version = "0.1.0"
edition = "2021"
[dependencies]
candle-core = { git = "https://github.com/huggingface/candle.git" }
candle-nn = { git = "https://github.com/huggingface/candle.git" }
candle-transformers = { git = "https://github.com/huggingface/candle.git" }
candle-examples = { git = "https://github.com/huggingface/candle.git" }
[target.'cfg(target_os = "macos")'.dependencies]
candle-core = { git = "https://github.com/huggingface/candle.git", features = ["metal"] }
candle-nn = { git = "https://github.com/huggingface/candle.git", features = ["metal"] }
candle-transformers = { git = "https://github.com/huggingface/candle.git", features = ["metal"] }
hf-hub = "0.4"
tokenizers = "0.21"
anyhow = "1.0"
clap = { version = "4.0", features = ["derive", "string"] }
serde_json = "1.0"
tracing = "0.1"
tracing-chrome = "0.7"
tracing-subscriber = "0.3"
[features]
default = []
cuda = ["candle-core/cuda", "candle-nn/cuda", "candle-transformers/cuda"]
metal = ["candle-core/metal", "candle-nn/metal", "candle-transformers/metal"]

View File

@@ -0,0 +1,137 @@
# Gemma Runner
Fast Gemma inference with Candle framework in Rust.
## Features
- Support for multiple Gemma model versions (v1, v2, v3)
- GPU acceleration with CUDA and Metal
- Configurable sampling parameters
- Multiple model variants including instruct and code models
## Supported Models
### Gemma v1
- `gemma-2b` - Base 2B model
- `gemma-7b` - Base 7B model
- `gemma-2b-it` - Instruct 2B model
- `gemma-7b-it` - Instruct 7B model
- `gemma-1.1-2b-it` - Instruct 2B v1.1 model
- `gemma-1.1-7b-it` - Instruct 7B v1.1 model
### CodeGemma
- `codegemma-2b` - Code base 2B model
- `codegemma-7b` - Code base 7B model
- `codegemma-2b-it` - Code instruct 2B model
- `codegemma-7b-it` - Code instruct 7B model
### Gemma v2
- `gemma-2-2b` - Base 2B v2 model (default)
- `gemma-2-2b-it` - Instruct 2B v2 model
- `gemma-2-9b` - Base 9B v2 model
- `gemma-2-9b-it` - Instruct 9B v2 model
### Gemma v3
- `gemma-3-1b` - Base 1B v3 model
- `gemma-3-1b-it` - Instruct 1B v3 model
## Installation
```bash
cd gemma-runner
cargo build --release
```
For GPU support:
```bash
# CUDA
cargo build --release --features cuda
# Metal (macOS)
cargo build --release --features metal
```
## Usage
### Basic Usage
```bash
# Run with default model (gemma-2-2b)
cargo run -- --prompt "The capital of France is"
# Specify a different model
cargo run -- --model gemma-2b-it --prompt "Explain quantum computing"
# Generate more tokens
cargo run -- --model codegemma-2b-it --prompt "Write a Python function to sort a list" --max-tokens 200
```
### Advanced Options
```bash
# Use CPU instead of GPU
cargo run -- --cpu --prompt "Hello world"
# Adjust sampling parameters
cargo run -- --temperature 0.8 --top-p 0.9 --prompt "Write a story about"
# Use custom model from HuggingFace Hub
cargo run -- --model-id "google/gemma-2-2b-it" --prompt "What is AI?"
# Enable tracing for performance analysis
cargo run -- --tracing --prompt "Explain machine learning"
```
### Command Line Arguments
- `--prompt, -p` - The prompt to generate text from (default: "The capital of France is")
- `--model, -m` - The model to use (default: "gemma-2-2b")
- `--cpu` - Run on CPU rather than GPU
- `--temperature, -t` - Sampling temperature (optional)
- `--top-p` - Nucleus sampling probability cutoff (optional)
- `--seed` - Random seed (default: 299792458)
- `--max-tokens, -n` - Maximum tokens to generate (default: 100)
- `--model-id` - Custom model ID from HuggingFace Hub
- `--revision` - Model revision (default: "main")
- `--use-flash-attn` - Use flash attention
- `--repeat-penalty` - Repetition penalty (default: 1.1)
- `--repeat-last-n` - Context size for repeat penalty (default: 64)
- `--dtype` - Data type (f16, bf16, f32)
- `--tracing` - Enable performance tracing
## Examples
### Text Generation
```bash
cargo run -- --model gemma-2b-it --prompt "Explain the theory of relativity" --max-tokens 150
```
### Code Generation
```bash
cargo run -- --model codegemma-7b-it --prompt "Write a Rust function to calculate factorial" --max-tokens 100
```
### Creative Writing
```bash
cargo run -- --model gemma-7b-it --temperature 0.9 --prompt "Once upon a time in a magical forest" --max-tokens 200
```
### Chat with Gemma 3 (Instruct format)
```bash
cargo run -- --model gemma-3-1b-it --prompt "How do I learn Rust programming?"
```
## Performance Notes
- GPU acceleration is automatically detected and used when available
- BF16 precision is used on CUDA for better performance
- F32 precision is used on CPU
- Flash attention can be enabled with `--use-flash-attn` for supported models
- Model files are cached locally after first download
## Requirements
- Rust 1.70+
- CUDA toolkit (for CUDA support)
- Metal (automatically available on macOS)
- Internet connection for first-time model download

View File

@@ -0,0 +1,389 @@
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use anyhow::{Error as E, Result};
use clap::ValueEnum;
use candle_transformers::models::gemma::{Config as Config1, Model as Model1};
use candle_transformers::models::gemma2::{Config as Config2, Model as Model2};
use candle_transformers::models::gemma3::{Config as Config3, Model as Model3};
// Removed gemma_cli import as it's not needed for the API
use candle_core::{utils, DType, Device, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use std::io::Write;
use tokenizers::Tokenizer;
use std::sync::mpsc::{self, Receiver, Sender};
use std::thread;
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
pub enum WhichModel {
#[value(name = "gemma-2b")]
Base2B,
#[value(name = "gemma-7b")]
Base7B,
#[value(name = "gemma-2b-it")]
Instruct2B,
#[value(name = "gemma-7b-it")]
Instruct7B,
#[value(name = "gemma-1.1-2b-it")]
InstructV1_1_2B,
#[value(name = "gemma-1.1-7b-it")]
InstructV1_1_7B,
#[value(name = "codegemma-2b")]
CodeBase2B,
#[value(name = "codegemma-7b")]
CodeBase7B,
#[value(name = "codegemma-2b-it")]
CodeInstruct2B,
#[value(name = "codegemma-7b-it")]
CodeInstruct7B,
#[value(name = "gemma-2-2b")]
BaseV2_2B,
#[value(name = "gemma-2-2b-it")]
InstructV2_2B,
#[value(name = "gemma-2-9b")]
BaseV2_9B,
#[value(name = "gemma-2-9b-it")]
InstructV2_9B,
#[value(name = "gemma-3-1b")]
BaseV3_1B,
#[value(name = "gemma-3-1b-it")]
InstructV3_1B,
}
enum Model {
V1(Model1),
V2(Model2),
V3(Model3),
}
impl Model {
fn forward(&mut self, input_ids: &Tensor, pos: usize) -> candle_core::Result<Tensor> {
match self {
Self::V1(m) => m.forward(input_ids, pos),
Self::V2(m) => m.forward(input_ids, pos),
Self::V3(m) => m.forward(input_ids, pos),
}
}
}
pub struct TextGeneration {
model: Model,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}
fn device(cpu: bool) -> Result<Device> {
if cpu {
Ok(Device::Cpu)
} else if utils::cuda_is_available() {
Ok(Device::new_cuda(0)?)
} else if utils::metal_is_available() {
Ok(Device::new_metal(0)?)
} else {
Ok(Device::Cpu)
}
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}
/// Stream-only generation: sends freshly generated token strings over `tx`.
/// (Does not send the prompt tokens; only newly generated model tokens.)
fn run_stream(&mut self, prompt: &str, sample_len: usize, tx: Sender<Result<String>>) -> Result<()> {
self.tokenizer.clear();
// Encode prompt (context only; do not emit prompt tokens to the stream).
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
// Warm the tokenizer's internal state with prompt tokens (so merges are correct),
// but do not send them to the receiver.
for &t in tokens.iter() {
let _ = self.tokenizer.next_token(t)?;
}
// Make sure stdout isn't holding anything (if caller also prints).
std::io::stdout().flush()?;
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("<eos>") {
Some(token) => token,
None => anyhow::bail!("cannot find the <eos> token"),
};
let eot_token = match self.tokenizer.get_token("<end_of_turn>") {
Some(token) => token,
None => {
eprintln!("Warning: <end_of_turn> token not found, using <eos> as backup");
eos_token
}
};
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, start_pos)?;
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token || next_token == eot_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
// Best-effort send; ignore if receiver dropped.
let _ = tx.send(Ok(t));
}
}
let _dt = start_gen.elapsed();
// Flush any remaining buffered bytes as one final chunk.
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
let _ = tx.send(Ok(rest));
}
Ok(())
}
}
#[derive(Debug, Clone)]
pub struct GemmaInferenceConfig {
pub tracing: bool,
pub prompt: String,
pub model: WhichModel,
pub cpu: bool,
pub dtype: Option<String>,
pub model_id: Option<String>,
pub revision: String,
pub use_flash_attn: bool,
pub seed: u64,
pub temperature: f64,
pub top_p: Option<f64>,
pub repeat_penalty: f32,
pub repeat_last_n: usize,
pub max_tokens: usize,
}
impl Default for GemmaInferenceConfig {
fn default() -> Self {
Self {
tracing: false,
prompt: "Hello".to_string(),
model: WhichModel::InstructV2_2B,
cpu: false,
dtype: None,
model_id: None,
revision: "main".to_string(),
use_flash_attn: false,
seed: 299792458,
temperature: 0.8,
top_p: None,
repeat_penalty: 1.1,
repeat_last_n: 128,
max_tokens: 100,
}
}
}
// Removed From<Args> implementation as Args is not available and not needed for API usage
/// Builds the model and returns a channel that streams generated token strings.
/// If model setup fails, the `Result` is returned immediately.
pub fn run_gemma_api(cfg: GemmaInferenceConfig) -> Result<Receiver<Result<String>>> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let _guard = if cfg.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
utils::with_avx(),
utils::with_neon(),
utils::with_simd128(),
utils::with_f16c()
);
let device = device(cfg.cpu)?;
println!("Device: {:?}", device);
let dtype = match cfg.dtype.as_deref() {
Some("f16") => DType::F16,
Some("bf16") => DType::BF16,
Some("f32") => DType::F32,
Some(dtype) => anyhow::bail!("Unsupported dtype {dtype}"),
None => {
if device.is_cuda() {
DType::BF16
} else {
DType::F16
}
}
};
println!("Using dtype: {:?}", dtype);
let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = cfg.model_id.unwrap_or_else(|| {
match cfg.model {
WhichModel::Base2B => "google/gemma-2b",
WhichModel::Base7B => "google/gemma-7b",
WhichModel::Instruct2B => "google/gemma-2b-it",
WhichModel::Instruct7B => "google/gemma-7b-it",
WhichModel::InstructV1_1_2B => "google/gemma-1.1-2b-it",
WhichModel::InstructV1_1_7B => "google/gemma-1.1-7b-it",
WhichModel::CodeBase2B => "google/codegemma-2b",
WhichModel::CodeBase7B => "google/codegemma-7b",
WhichModel::CodeInstruct2B => "google/codegemma-2b-it",
WhichModel::CodeInstruct7B => "google/codegemma-7b-it",
WhichModel::BaseV2_2B => "google/gemma-2-2b",
WhichModel::InstructV2_2B => "google/gemma-2-2b-it",
WhichModel::BaseV2_9B => "google/gemma-2-9b",
WhichModel::InstructV2_9B => "google/gemma-2-9b-it",
WhichModel::BaseV3_1B => "google/gemma-3-1b-pt",
WhichModel::InstructV3_1B => "google/gemma-3-1b-it",
}
.to_string()
});
println!("Loading model: {}", &model_id);
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, cfg.revision));
let tokenizer_filename = repo.get("tokenizer.json")?;
let config_filename = repo.get("config.json")?;
let filenames = match cfg.model {
WhichModel::BaseV3_1B | WhichModel::InstructV3_1B => vec![repo.get("model.safetensors")?],
_ => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
};
println!("Retrieved files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model: Model = match cfg.model {
WhichModel::Base2B
| WhichModel::Base7B
| WhichModel::Instruct2B
| WhichModel::Instruct7B
| WhichModel::InstructV1_1_2B
| WhichModel::InstructV1_1_7B
| WhichModel::CodeBase2B
| WhichModel::CodeBase7B
| WhichModel::CodeInstruct2B
| WhichModel::CodeInstruct7B => {
let config: Config1 = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
let model = Model1::new(cfg.use_flash_attn, &config, vb)?;
Model::V1(model)
}
WhichModel::BaseV2_2B | WhichModel::InstructV2_2B | WhichModel::BaseV2_9B | WhichModel::InstructV2_9B => {
let config: Config2 = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
let model = Model2::new(cfg.use_flash_attn, &config, vb)?;
Model::V2(model)
}
WhichModel::BaseV3_1B | WhichModel::InstructV3_1B => {
let config: Config3 = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
let model = Model3::new(cfg.use_flash_attn, &config, vb)?;
Model::V3(model)
}
};
println!("Loaded model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
cfg.seed,
cfg.temperature.into(),
cfg.top_p,
cfg.repeat_penalty,
cfg.repeat_last_n,
&device,
);
let prompt = match cfg.model {
WhichModel::InstructV3_1B => {
format!(
"<start_of_turn>user\n{}<end_of_turn>\n<start_of_turn>model\n",
cfg.prompt
)
}
_ => cfg.prompt,
};
println!("Starting inference...");
// Create the channel after successful setup.
let (tx, rx) = mpsc::channel::<Result<String>>();
// Spawn generation thread; send tokens to the channel.
thread::spawn(move || {
// If generation fails, forward the error once.
if let Err(e) = pipeline.run_stream(&prompt, cfg.max_tokens, tx.clone()) {
let _ = tx.send(Err(e));
}
// Channel closes when tx is dropped.
});
Ok(rx)
}

View File

@@ -0,0 +1,97 @@
use std::io::Write;
use clap::Parser;
use crate::gemma_api::{run_gemma_api, GemmaInferenceConfig, WhichModel};
#[derive(Parser, Debug)]
#[command(author, version, about = "Fast Gemma inference with Candle", long_about = None)]
pub struct Args {
/// The prompt to generate text from
#[arg(short, long, default_value = "The capital of France is")]
pub(crate) prompt: String,
/// The model to use
#[arg(short, long, default_value = "gemma-2-2b")]
pub(crate) model: WhichModel,
/// Run on CPU rather than GPU
#[arg(long)]
pub(crate) cpu: bool,
/// The temperature used to generate samples
#[arg(short, long)]
pub(crate) temperature: Option<f64>,
/// Nucleus sampling probability cutoff
#[arg(long)]
pub(crate) top_p: Option<f64>,
/// The seed to use when generating random samples
#[arg(long, default_value_t = 299792458)]
pub(crate) seed: u64,
/// The length of the sample to generate (in tokens)
#[arg(short = 'n', long, default_value_t = 100)]
pub(crate) max_tokens: usize,
/// Use different dtype than default
#[arg(long)]
pub(crate) dtype: Option<String>,
/// Custom model ID from HuggingFace Hub
#[arg(long)]
pub(crate) model_id: Option<String>,
/// Model revision
#[arg(long, default_value = "main")]
pub(crate) revision: String,
/// Use flash attention
#[arg(long)]
pub(crate) use_flash_attn: bool,
/// Penalty to be applied for repeating tokens, 1. means no penalty
#[arg(long, default_value_t = 1.1)]
pub(crate) repeat_penalty: f32,
/// The context size to consider for the repeat penalty
#[arg(long, default_value_t = 64)]
pub(crate) repeat_last_n: usize,
/// Enable tracing
#[arg(long)]
pub(crate) tracing: bool,
}
pub fn run_cli() -> anyhow::Result<()> {
let args = Args::parse();
let cfg = GemmaInferenceConfig {
tracing: args.tracing,
prompt: args.prompt,
model: args.model,
cpu: args.cpu,
dtype: args.dtype,
model_id: args.model_id,
revision: args.revision,
use_flash_attn: args.use_flash_attn,
seed: args.seed,
temperature: args.temperature.unwrap_or(0.8),
top_p: args.top_p,
repeat_penalty: args.repeat_penalty,
repeat_last_n: args.repeat_last_n,
max_tokens: args.max_tokens,
};
let rx = run_gemma_api(cfg)?;
for msg in rx {
match msg {
Ok(tok) => {
print!("{tok}");
let _ = std::io::stdout().flush(); // <- force it out now
}
Err(e) => {
eprintln!("generation error: {e}");
break;
}
}
}
Ok(())
}

View File

@@ -0,0 +1,3 @@
pub mod gemma_api;
pub use gemma_api::{run_gemma_api, GemmaInferenceConfig, WhichModel};

View File

@@ -0,0 +1,17 @@
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
mod gemma_cli;
mod gemma_api;
use anyhow::Error;
use clap::{Parser, ValueEnum};
use crate::gemma_cli::run_cli;
use std::io::Write;
/// just a placeholder, not used for anything
fn main() -> std::result::Result<(), Error> {
run_cli()
}