mirror of
https://github.com/geoffsee/predict-otron-9001.git
synced 2025-09-08 22:46:44 +00:00
supports small llama and gemma models
Refactor inference dedicated crates for llama and gemma inferencing, not integrated
This commit is contained in:
28
crates/gemma-runner/Cargo.toml
Normal file
28
crates/gemma-runner/Cargo.toml
Normal file
@@ -0,0 +1,28 @@
|
||||
[package]
|
||||
name = "gemma-runner"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
candle-core = { git = "https://github.com/huggingface/candle.git" }
|
||||
candle-nn = { git = "https://github.com/huggingface/candle.git" }
|
||||
candle-transformers = { git = "https://github.com/huggingface/candle.git" }
|
||||
candle-examples = { git = "https://github.com/huggingface/candle.git" }
|
||||
|
||||
[target.'cfg(target_os = "macos")'.dependencies]
|
||||
candle-core = { git = "https://github.com/huggingface/candle.git", features = ["metal"] }
|
||||
candle-nn = { git = "https://github.com/huggingface/candle.git", features = ["metal"] }
|
||||
candle-transformers = { git = "https://github.com/huggingface/candle.git", features = ["metal"] }
|
||||
hf-hub = "0.4"
|
||||
tokenizers = "0.21"
|
||||
anyhow = "1.0"
|
||||
clap = { version = "4.0", features = ["derive", "string"] }
|
||||
serde_json = "1.0"
|
||||
tracing = "0.1"
|
||||
tracing-chrome = "0.7"
|
||||
tracing-subscriber = "0.3"
|
||||
|
||||
[features]
|
||||
default = []
|
||||
cuda = ["candle-core/cuda", "candle-nn/cuda", "candle-transformers/cuda"]
|
||||
metal = ["candle-core/metal", "candle-nn/metal", "candle-transformers/metal"]
|
137
crates/gemma-runner/README.md
Normal file
137
crates/gemma-runner/README.md
Normal file
@@ -0,0 +1,137 @@
|
||||
# Gemma Runner
|
||||
|
||||
Fast Gemma inference with Candle framework in Rust.
|
||||
|
||||
## Features
|
||||
|
||||
- Support for multiple Gemma model versions (v1, v2, v3)
|
||||
- GPU acceleration with CUDA and Metal
|
||||
- Configurable sampling parameters
|
||||
- Multiple model variants including instruct and code models
|
||||
|
||||
## Supported Models
|
||||
|
||||
### Gemma v1
|
||||
- `gemma-2b` - Base 2B model
|
||||
- `gemma-7b` - Base 7B model
|
||||
- `gemma-2b-it` - Instruct 2B model
|
||||
- `gemma-7b-it` - Instruct 7B model
|
||||
- `gemma-1.1-2b-it` - Instruct 2B v1.1 model
|
||||
- `gemma-1.1-7b-it` - Instruct 7B v1.1 model
|
||||
|
||||
### CodeGemma
|
||||
- `codegemma-2b` - Code base 2B model
|
||||
- `codegemma-7b` - Code base 7B model
|
||||
- `codegemma-2b-it` - Code instruct 2B model
|
||||
- `codegemma-7b-it` - Code instruct 7B model
|
||||
|
||||
### Gemma v2
|
||||
- `gemma-2-2b` - Base 2B v2 model (default)
|
||||
- `gemma-2-2b-it` - Instruct 2B v2 model
|
||||
- `gemma-2-9b` - Base 9B v2 model
|
||||
- `gemma-2-9b-it` - Instruct 9B v2 model
|
||||
|
||||
### Gemma v3
|
||||
- `gemma-3-1b` - Base 1B v3 model
|
||||
- `gemma-3-1b-it` - Instruct 1B v3 model
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
cd gemma-runner
|
||||
cargo build --release
|
||||
```
|
||||
|
||||
For GPU support:
|
||||
```bash
|
||||
# CUDA
|
||||
cargo build --release --features cuda
|
||||
|
||||
# Metal (macOS)
|
||||
cargo build --release --features metal
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```bash
|
||||
# Run with default model (gemma-2-2b)
|
||||
cargo run -- --prompt "The capital of France is"
|
||||
|
||||
# Specify a different model
|
||||
cargo run -- --model gemma-2b-it --prompt "Explain quantum computing"
|
||||
|
||||
# Generate more tokens
|
||||
cargo run -- --model codegemma-2b-it --prompt "Write a Python function to sort a list" --max-tokens 200
|
||||
```
|
||||
|
||||
### Advanced Options
|
||||
|
||||
```bash
|
||||
# Use CPU instead of GPU
|
||||
cargo run -- --cpu --prompt "Hello world"
|
||||
|
||||
# Adjust sampling parameters
|
||||
cargo run -- --temperature 0.8 --top-p 0.9 --prompt "Write a story about"
|
||||
|
||||
# Use custom model from HuggingFace Hub
|
||||
cargo run -- --model-id "google/gemma-2-2b-it" --prompt "What is AI?"
|
||||
|
||||
# Enable tracing for performance analysis
|
||||
cargo run -- --tracing --prompt "Explain machine learning"
|
||||
```
|
||||
|
||||
### Command Line Arguments
|
||||
|
||||
- `--prompt, -p` - The prompt to generate text from (default: "The capital of France is")
|
||||
- `--model, -m` - The model to use (default: "gemma-2-2b")
|
||||
- `--cpu` - Run on CPU rather than GPU
|
||||
- `--temperature, -t` - Sampling temperature (optional)
|
||||
- `--top-p` - Nucleus sampling probability cutoff (optional)
|
||||
- `--seed` - Random seed (default: 299792458)
|
||||
- `--max-tokens, -n` - Maximum tokens to generate (default: 100)
|
||||
- `--model-id` - Custom model ID from HuggingFace Hub
|
||||
- `--revision` - Model revision (default: "main")
|
||||
- `--use-flash-attn` - Use flash attention
|
||||
- `--repeat-penalty` - Repetition penalty (default: 1.1)
|
||||
- `--repeat-last-n` - Context size for repeat penalty (default: 64)
|
||||
- `--dtype` - Data type (f16, bf16, f32)
|
||||
- `--tracing` - Enable performance tracing
|
||||
|
||||
## Examples
|
||||
|
||||
### Text Generation
|
||||
```bash
|
||||
cargo run -- --model gemma-2b-it --prompt "Explain the theory of relativity" --max-tokens 150
|
||||
```
|
||||
|
||||
### Code Generation
|
||||
```bash
|
||||
cargo run -- --model codegemma-7b-it --prompt "Write a Rust function to calculate factorial" --max-tokens 100
|
||||
```
|
||||
|
||||
### Creative Writing
|
||||
```bash
|
||||
cargo run -- --model gemma-7b-it --temperature 0.9 --prompt "Once upon a time in a magical forest" --max-tokens 200
|
||||
```
|
||||
|
||||
### Chat with Gemma 3 (Instruct format)
|
||||
```bash
|
||||
cargo run -- --model gemma-3-1b-it --prompt "How do I learn Rust programming?"
|
||||
```
|
||||
|
||||
## Performance Notes
|
||||
|
||||
- GPU acceleration is automatically detected and used when available
|
||||
- BF16 precision is used on CUDA for better performance
|
||||
- F32 precision is used on CPU
|
||||
- Flash attention can be enabled with `--use-flash-attn` for supported models
|
||||
- Model files are cached locally after first download
|
||||
|
||||
## Requirements
|
||||
|
||||
- Rust 1.70+
|
||||
- CUDA toolkit (for CUDA support)
|
||||
- Metal (automatically available on macOS)
|
||||
- Internet connection for first-time model download
|
389
crates/gemma-runner/src/gemma_api.rs
Normal file
389
crates/gemma-runner/src/gemma_api.rs
Normal file
@@ -0,0 +1,389 @@
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::ValueEnum;
|
||||
use candle_transformers::models::gemma::{Config as Config1, Model as Model1};
|
||||
use candle_transformers::models::gemma2::{Config as Config2, Model as Model2};
|
||||
use candle_transformers::models::gemma3::{Config as Config3, Model as Model3};
|
||||
|
||||
// Removed gemma_cli import as it's not needed for the API
|
||||
use candle_core::{utils, DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use std::io::Write;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
use std::sync::mpsc::{self, Receiver, Sender};
|
||||
use std::thread;
|
||||
|
||||
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
|
||||
pub enum WhichModel {
|
||||
#[value(name = "gemma-2b")]
|
||||
Base2B,
|
||||
#[value(name = "gemma-7b")]
|
||||
Base7B,
|
||||
#[value(name = "gemma-2b-it")]
|
||||
Instruct2B,
|
||||
#[value(name = "gemma-7b-it")]
|
||||
Instruct7B,
|
||||
#[value(name = "gemma-1.1-2b-it")]
|
||||
InstructV1_1_2B,
|
||||
#[value(name = "gemma-1.1-7b-it")]
|
||||
InstructV1_1_7B,
|
||||
#[value(name = "codegemma-2b")]
|
||||
CodeBase2B,
|
||||
#[value(name = "codegemma-7b")]
|
||||
CodeBase7B,
|
||||
#[value(name = "codegemma-2b-it")]
|
||||
CodeInstruct2B,
|
||||
#[value(name = "codegemma-7b-it")]
|
||||
CodeInstruct7B,
|
||||
#[value(name = "gemma-2-2b")]
|
||||
BaseV2_2B,
|
||||
#[value(name = "gemma-2-2b-it")]
|
||||
InstructV2_2B,
|
||||
#[value(name = "gemma-2-9b")]
|
||||
BaseV2_9B,
|
||||
#[value(name = "gemma-2-9b-it")]
|
||||
InstructV2_9B,
|
||||
#[value(name = "gemma-3-1b")]
|
||||
BaseV3_1B,
|
||||
#[value(name = "gemma-3-1b-it")]
|
||||
InstructV3_1B,
|
||||
}
|
||||
|
||||
enum Model {
|
||||
V1(Model1),
|
||||
V2(Model2),
|
||||
V3(Model3),
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn forward(&mut self, input_ids: &Tensor, pos: usize) -> candle_core::Result<Tensor> {
|
||||
match self {
|
||||
Self::V1(m) => m.forward(input_ids, pos),
|
||||
Self::V2(m) => m.forward(input_ids, pos),
|
||||
Self::V3(m) => m.forward(input_ids, pos),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
fn device(cpu: bool) -> Result<Device> {
|
||||
if cpu {
|
||||
Ok(Device::Cpu)
|
||||
} else if utils::cuda_is_available() {
|
||||
Ok(Device::new_cuda(0)?)
|
||||
} else if utils::metal_is_available() {
|
||||
Ok(Device::new_metal(0)?)
|
||||
} else {
|
||||
Ok(Device::Cpu)
|
||||
}
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Stream-only generation: sends freshly generated token strings over `tx`.
|
||||
/// (Does not send the prompt tokens; only newly generated model tokens.)
|
||||
fn run_stream(&mut self, prompt: &str, sample_len: usize, tx: Sender<Result<String>>) -> Result<()> {
|
||||
self.tokenizer.clear();
|
||||
|
||||
// Encode prompt (context only; do not emit prompt tokens to the stream).
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
|
||||
// Warm the tokenizer's internal state with prompt tokens (so merges are correct),
|
||||
// but do not send them to the receiver.
|
||||
for &t in tokens.iter() {
|
||||
let _ = self.tokenizer.next_token(t)?;
|
||||
}
|
||||
// Make sure stdout isn't holding anything (if caller also prints).
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
|
||||
let eos_token = match self.tokenizer.get_token("<eos>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the <eos> token"),
|
||||
};
|
||||
let eot_token = match self.tokenizer.get_token("<end_of_turn>") {
|
||||
Some(token) => token,
|
||||
None => {
|
||||
eprintln!("Warning: <end_of_turn> token not found, using <eos> as backup");
|
||||
eos_token
|
||||
}
|
||||
};
|
||||
|
||||
let start_gen = std::time::Instant::now();
|
||||
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input, start_pos)?;
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
|
||||
if next_token == eos_token || next_token == eot_token {
|
||||
break;
|
||||
}
|
||||
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
// Best-effort send; ignore if receiver dropped.
|
||||
let _ = tx.send(Ok(t));
|
||||
}
|
||||
}
|
||||
|
||||
let _dt = start_gen.elapsed();
|
||||
|
||||
// Flush any remaining buffered bytes as one final chunk.
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
let _ = tx.send(Ok(rest));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct GemmaInferenceConfig {
|
||||
pub tracing: bool,
|
||||
pub prompt: String,
|
||||
pub model: WhichModel,
|
||||
pub cpu: bool,
|
||||
pub dtype: Option<String>,
|
||||
pub model_id: Option<String>,
|
||||
pub revision: String,
|
||||
pub use_flash_attn: bool,
|
||||
pub seed: u64,
|
||||
pub temperature: f64,
|
||||
pub top_p: Option<f64>,
|
||||
pub repeat_penalty: f32,
|
||||
pub repeat_last_n: usize,
|
||||
pub max_tokens: usize,
|
||||
}
|
||||
|
||||
impl Default for GemmaInferenceConfig {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
tracing: false,
|
||||
prompt: "Hello".to_string(),
|
||||
model: WhichModel::InstructV2_2B,
|
||||
cpu: false,
|
||||
dtype: None,
|
||||
model_id: None,
|
||||
revision: "main".to_string(),
|
||||
use_flash_attn: false,
|
||||
seed: 299792458,
|
||||
temperature: 0.8,
|
||||
top_p: None,
|
||||
repeat_penalty: 1.1,
|
||||
repeat_last_n: 128,
|
||||
max_tokens: 100,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Removed From<Args> implementation as Args is not available and not needed for API usage
|
||||
|
||||
/// Builds the model and returns a channel that streams generated token strings.
|
||||
/// If model setup fails, the `Result` is returned immediately.
|
||||
pub fn run_gemma_api(cfg: GemmaInferenceConfig) -> Result<Receiver<Result<String>>> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let _guard = if cfg.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
utils::with_avx(),
|
||||
utils::with_neon(),
|
||||
utils::with_simd128(),
|
||||
utils::with_f16c()
|
||||
);
|
||||
|
||||
let device = device(cfg.cpu)?;
|
||||
println!("Device: {:?}", device);
|
||||
|
||||
let dtype = match cfg.dtype.as_deref() {
|
||||
Some("f16") => DType::F16,
|
||||
Some("bf16") => DType::BF16,
|
||||
Some("f32") => DType::F32,
|
||||
Some(dtype) => anyhow::bail!("Unsupported dtype {dtype}"),
|
||||
None => {
|
||||
if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F16
|
||||
}
|
||||
}
|
||||
};
|
||||
println!("Using dtype: {:?}", dtype);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
|
||||
let model_id = cfg.model_id.unwrap_or_else(|| {
|
||||
match cfg.model {
|
||||
WhichModel::Base2B => "google/gemma-2b",
|
||||
WhichModel::Base7B => "google/gemma-7b",
|
||||
WhichModel::Instruct2B => "google/gemma-2b-it",
|
||||
WhichModel::Instruct7B => "google/gemma-7b-it",
|
||||
WhichModel::InstructV1_1_2B => "google/gemma-1.1-2b-it",
|
||||
WhichModel::InstructV1_1_7B => "google/gemma-1.1-7b-it",
|
||||
WhichModel::CodeBase2B => "google/codegemma-2b",
|
||||
WhichModel::CodeBase7B => "google/codegemma-7b",
|
||||
WhichModel::CodeInstruct2B => "google/codegemma-2b-it",
|
||||
WhichModel::CodeInstruct7B => "google/codegemma-7b-it",
|
||||
WhichModel::BaseV2_2B => "google/gemma-2-2b",
|
||||
WhichModel::InstructV2_2B => "google/gemma-2-2b-it",
|
||||
WhichModel::BaseV2_9B => "google/gemma-2-9b",
|
||||
WhichModel::InstructV2_9B => "google/gemma-2-9b-it",
|
||||
WhichModel::BaseV3_1B => "google/gemma-3-1b-pt",
|
||||
WhichModel::InstructV3_1B => "google/gemma-3-1b-it",
|
||||
}
|
||||
.to_string()
|
||||
});
|
||||
|
||||
println!("Loading model: {}", &model_id);
|
||||
|
||||
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, cfg.revision));
|
||||
let tokenizer_filename = repo.get("tokenizer.json")?;
|
||||
let config_filename = repo.get("config.json")?;
|
||||
let filenames = match cfg.model {
|
||||
WhichModel::BaseV3_1B | WhichModel::InstructV3_1B => vec![repo.get("model.safetensors")?],
|
||||
_ => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
||||
};
|
||||
println!("Retrieved files in {:?}", start.elapsed());
|
||||
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
|
||||
let model: Model = match cfg.model {
|
||||
WhichModel::Base2B
|
||||
| WhichModel::Base7B
|
||||
| WhichModel::Instruct2B
|
||||
| WhichModel::Instruct7B
|
||||
| WhichModel::InstructV1_1_2B
|
||||
| WhichModel::InstructV1_1_7B
|
||||
| WhichModel::CodeBase2B
|
||||
| WhichModel::CodeBase7B
|
||||
| WhichModel::CodeInstruct2B
|
||||
| WhichModel::CodeInstruct7B => {
|
||||
let config: Config1 = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
|
||||
let model = Model1::new(cfg.use_flash_attn, &config, vb)?;
|
||||
Model::V1(model)
|
||||
}
|
||||
WhichModel::BaseV2_2B | WhichModel::InstructV2_2B | WhichModel::BaseV2_9B | WhichModel::InstructV2_9B => {
|
||||
let config: Config2 = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
|
||||
let model = Model2::new(cfg.use_flash_attn, &config, vb)?;
|
||||
Model::V2(model)
|
||||
}
|
||||
WhichModel::BaseV3_1B | WhichModel::InstructV3_1B => {
|
||||
let config: Config3 = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
|
||||
let model = Model3::new(cfg.use_flash_attn, &config, vb)?;
|
||||
Model::V3(model)
|
||||
}
|
||||
};
|
||||
println!("Loaded model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
cfg.seed,
|
||||
cfg.temperature.into(),
|
||||
cfg.top_p,
|
||||
cfg.repeat_penalty,
|
||||
cfg.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
|
||||
let prompt = match cfg.model {
|
||||
WhichModel::InstructV3_1B => {
|
||||
format!(
|
||||
"<start_of_turn>user\n{}<end_of_turn>\n<start_of_turn>model\n",
|
||||
cfg.prompt
|
||||
)
|
||||
}
|
||||
_ => cfg.prompt,
|
||||
};
|
||||
|
||||
println!("Starting inference...");
|
||||
|
||||
// Create the channel after successful setup.
|
||||
let (tx, rx) = mpsc::channel::<Result<String>>();
|
||||
|
||||
// Spawn generation thread; send tokens to the channel.
|
||||
thread::spawn(move || {
|
||||
// If generation fails, forward the error once.
|
||||
if let Err(e) = pipeline.run_stream(&prompt, cfg.max_tokens, tx.clone()) {
|
||||
let _ = tx.send(Err(e));
|
||||
}
|
||||
// Channel closes when tx is dropped.
|
||||
});
|
||||
|
||||
Ok(rx)
|
||||
}
|
97
crates/gemma-runner/src/gemma_cli.rs
Normal file
97
crates/gemma-runner/src/gemma_cli.rs
Normal file
@@ -0,0 +1,97 @@
|
||||
use std::io::Write;
|
||||
use clap::Parser;
|
||||
use crate::gemma_api::{run_gemma_api, GemmaInferenceConfig, WhichModel};
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about = "Fast Gemma inference with Candle", long_about = None)]
|
||||
pub struct Args {
|
||||
/// The prompt to generate text from
|
||||
#[arg(short, long, default_value = "The capital of France is")]
|
||||
pub(crate) prompt: String,
|
||||
|
||||
/// The model to use
|
||||
#[arg(short, long, default_value = "gemma-2-2b")]
|
||||
pub(crate) model: WhichModel,
|
||||
|
||||
/// Run on CPU rather than GPU
|
||||
#[arg(long)]
|
||||
pub(crate) cpu: bool,
|
||||
|
||||
/// The temperature used to generate samples
|
||||
#[arg(short, long)]
|
||||
pub(crate) temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff
|
||||
#[arg(long)]
|
||||
pub(crate) top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
pub(crate) seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens)
|
||||
#[arg(short = 'n', long, default_value_t = 100)]
|
||||
pub(crate) max_tokens: usize,
|
||||
|
||||
/// Use different dtype than default
|
||||
#[arg(long)]
|
||||
pub(crate) dtype: Option<String>,
|
||||
|
||||
/// Custom model ID from HuggingFace Hub
|
||||
#[arg(long)]
|
||||
pub(crate) model_id: Option<String>,
|
||||
|
||||
/// Model revision
|
||||
#[arg(long, default_value = "main")]
|
||||
pub(crate) revision: String,
|
||||
|
||||
/// Use flash attention
|
||||
#[arg(long)]
|
||||
pub(crate) use_flash_attn: bool,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
pub(crate) repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty
|
||||
#[arg(long, default_value_t = 64)]
|
||||
pub(crate) repeat_last_n: usize,
|
||||
|
||||
/// Enable tracing
|
||||
#[arg(long)]
|
||||
pub(crate) tracing: bool,
|
||||
}
|
||||
|
||||
pub fn run_cli() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
let cfg = GemmaInferenceConfig {
|
||||
tracing: args.tracing,
|
||||
prompt: args.prompt,
|
||||
model: args.model,
|
||||
cpu: args.cpu,
|
||||
dtype: args.dtype,
|
||||
model_id: args.model_id,
|
||||
revision: args.revision,
|
||||
use_flash_attn: args.use_flash_attn,
|
||||
seed: args.seed,
|
||||
temperature: args.temperature.unwrap_or(0.8),
|
||||
top_p: args.top_p,
|
||||
repeat_penalty: args.repeat_penalty,
|
||||
repeat_last_n: args.repeat_last_n,
|
||||
max_tokens: args.max_tokens,
|
||||
};
|
||||
let rx = run_gemma_api(cfg)?;
|
||||
for msg in rx {
|
||||
match msg {
|
||||
Ok(tok) => {
|
||||
print!("{tok}");
|
||||
let _ = std::io::stdout().flush(); // <- force it out now
|
||||
}
|
||||
Err(e) => {
|
||||
eprintln!("generation error: {e}");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
3
crates/gemma-runner/src/lib.rs
Normal file
3
crates/gemma-runner/src/lib.rs
Normal file
@@ -0,0 +1,3 @@
|
||||
pub mod gemma_api;
|
||||
|
||||
pub use gemma_api::{run_gemma_api, GemmaInferenceConfig, WhichModel};
|
17
crates/gemma-runner/src/main.rs
Normal file
17
crates/gemma-runner/src/main.rs
Normal file
@@ -0,0 +1,17 @@
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
mod gemma_cli;
|
||||
mod gemma_api;
|
||||
|
||||
use anyhow::Error;
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use crate::gemma_cli::run_cli;
|
||||
use std::io::Write;
|
||||
|
||||
/// just a placeholder, not used for anything
|
||||
fn main() -> std::result::Result<(), Error> {
|
||||
run_cli()
|
||||
}
|
Reference in New Issue
Block a user