Files
manifold-workflow-engine/README.md
Geoff Seemueller 56f7f85235 Rename project, enhance documentation, and add error handling.
Updated project name and description in package.json for clearer purpose. Enhanced README with a detailed table of contents and error handling section. Improved error handling in index.js with comprehensive logging for various failure scenarios.
2024-11-09 11:11:30 -05:00

307 lines
8.1 KiB
Markdown

# workflow-function-manifold
> A TypeScript/JavaScript library for building dynamic, LLM-driven workflows using a region-based execution model
![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)
![Node Version](https://img.shields.io/badge/node-%3E%3D%2014.0.0-brightgreen)
## Table of Contents
- [Overview](#overview)
- [Installation](#installation)
- [Quick Start](#quick-start)
- [Core Components](#core-components)
- [Complete Example](#complete-example)
- [API Reference](#api-reference)
- [State Management](#state-management)
- [LLM Integration](#llm-integration)
- [Error Handling](#error-handling)
- [Contributing](#contributing)
- [License](#license)
## Overview
`workflow-function-manifold` enables you to create dynamic workflows that:
- Navigate between different execution regions based on LLM-interpreted intents
- Execute operations within regions based on state and context
- Maintain workflow state across operations
- Support flexible region-to-region connections
```mermaid
graph TD
MF[Workflow Function Manifold] -->|Initialize| CR[Current Region]
MF -->|Navigate| AR[Adjacent Regions]
MF -->|Execute| OP[Operators]
OP -->|Use| LLM[LLM Service]
LLM -->|Match| INT[Intent]
INT --> OP
OP -->|Update| ST[Workflow State]
ST -->|Inform| AR
AR -->|Check| NR[Next Region]
NR -->|If Valid| CR
CR -->|Continue| OP
NR -->|If Invalid| END[End]
style MF fill:#000000,stroke:#FFFFFF,stroke-width:4px,color:#ffffff
style CR fill:#222222,stroke:#FFFFFF,stroke-width:2px,color:#ffffff
style AR fill:#222222,stroke:#FFFFFF,stroke-width:2px,color:#ffffff
style OP fill:#333333,stroke:#FFFFFF,stroke-width:2px,color:#ffffff
style LLM fill:#333333,stroke:#FFFFFF,stroke-width:2px,color:#ffffff
style INT fill:#333333,stroke:#FFFFFF,stroke-width:2px,color:#ffffff
style NR fill:#333333,stroke:#FFFFFF,stroke-width:2px,color:#ffffff
style END fill:#222222,stroke:#FFFFFF,stroke-width:2px,color:#ffffff
style ST fill:#444444,stroke:#FFFFFF,stroke-width:2px,color:#ffffff
```
## Installation
```bash
npm install workflow-function-manifold
```
## Quick Start
```javascript
import {
WorkflowFunctionManifold,
ManifoldRegion,
WorkflowOperator,
DummyLlmService
} from 'workflow-function-manifold';
// Initialize the manifold with an LLM service
const llm = new DummyLlmService();
const manifold = new WorkflowFunctionManifold(llm);
// Create an operator
const analysisOperator = new WorkflowOperator('analysis', async (state) => {
console.log('Analyzing data...');
return { ...state, analyzed: true };
});
// Create and connect regions
const analysisRegion = new ManifoldRegion('analysis', [analysisOperator]);
manifold.addRegion(analysisRegion);
// Execute workflow
await manifold.navigate('analyze the data');
await manifold.executeWorkflow('analyze the data');
```
## Core Components
### WorkflowFunctionManifold
The main class that orchestrates workflow execution.
```javascript
const manifold = new WorkflowFunctionManifold(llmService);
// Add regions
manifold.addRegion(region);
// Navigate between regions
await manifold.navigate(prompt);
// Execute operations
await manifold.executeWorkflow(prompt);
```
### ManifoldRegion
Represents a workflow region containing operators and connections to other regions.
```javascript
const region = new ManifoldRegion('regionName', [operator1, operator2]);
// Connect regions
region.connectTo(otherRegion);
// Add operators
region.addOperator(newOperator);
```
### WorkflowOperator
Defines operations that can be executed within regions.
```javascript
const operator = new WorkflowOperator('operatorName', async (state) => {
// Modify state
return newState;
});
```
### DummyLlmService
A simple LLM service simulation for intent matching.
```javascript
const llm = new DummyLlmService();
const intent = await llm.query('analyze the data');
// Returns: { confidence: 0.9, action: 'analysis' }
```
## Complete Example
Here's a full example demonstrating a three-stage workflow:
```javascript
async function createWorkflow() {
const llm = new DummyLlmService();
const manifold = new WorkflowFunctionManifold(llm);
// Create operators
const analysisOp = new WorkflowOperator('analysis', async (state) => {
return { ...state, analyzed: true };
});
const processingOp = new WorkflowOperator('processing', async (state) => {
return { ...state, processed: true };
});
const transformOp = new WorkflowOperator('transformation', async (state) => {
return { ...state, transformed: true };
});
// Create and connect regions
const analysisRegion = new ManifoldRegion('analysis', [analysisOp]);
const processingRegion = new ManifoldRegion('processing', [processingOp]);
const transformRegion = new ManifoldRegion('transformation', [transformOp]);
analysisRegion.connectTo(processingRegion);
processingRegion.connectTo(transformRegion);
// Add regions to manifold
manifold.addRegion(analysisRegion);
manifold.addRegion(processingRegion);
manifold.addRegion(transformRegion);
return manifold;
}
// Execute workflow
const manifold = await createWorkflow();
const prompts = [
'analyze the data',
'process the results',
'transform the output'
];
for (const prompt of prompts) {
await manifold.navigate(prompt);
await manifold.executeWorkflow(prompt);
}
```
## API Reference
### WorkflowFunctionManifold
#### Constructor
- `constructor(llmService: LLMService)`
#### Methods
- `addRegion(region: ManifoldRegion): void`
- `async navigate(prompt: string): Promise<boolean>`
- `async executeWorkflow(prompt: string): Promise<boolean>`
### ManifoldRegion
#### Constructor
- `constructor(name: string, operators: WorkflowOperator[] = [])`
#### Methods
- `addOperator(operator: WorkflowOperator): void`
- `connectTo(region: ManifoldRegion): void`
- `async getValidOperators(state: any): Promise<WorkflowOperator[]>`
### WorkflowOperator
#### Constructor
- `constructor(name: string, operation: (state: any) => Promise<any>)`
#### Methods
- `async execute(state: any): Promise<any>`
## State Management
The workflow maintains state across operations. Each operator can access and modify the state:
```javascript
const operator = new WorkflowOperator('example', async (state) => {
// Access existing state
const { previousValue } = state;
// Return modified state
return {
...state,
newValue: 'updated'
};
});
```
## LLM Integration
The system uses LLM services for intent recognition. The default `DummyLlmService` provides basic intent matching, but you can implement your own LLM service:
```javascript
class CustomLLMService {
async query(prompt) {
// Implement custom LLM logic
return {
confidence: number,
action: string
};
}
}
```
#### **Error Handling**
This library includes basic error handling to ensure workflows continue running smoothly, even when unexpected issues arise.
#### **Navigation Errors**
If a prompt doesn't match a valid adjacent region, the system will:
- Log a warning: `No valid region found for prompt: "<prompt>"`
- Continue without changing the current region.
#### **Operator Execution Errors**
If no matching operator is found for a prompt, or an operator encounters an error during execution:
- Log a warning: `No matching operator found for intent: <intent>`
- Log an error if execution fails: `Error during workflow execution for prompt "<prompt>": <error message>`
#### **LLM Query Errors**
In case of issues querying the LLM service:
- Log an error: `Error during navigation for prompt "<prompt>": <error message>`
#### **Example Error Logging**
```javascript
const manifold = new WorkflowFunctionManifold(new DummyLlmService());
try {
await manifold.navigate('unknown command');
} catch (error) {
console.error('Critical navigation error:', error);
}
try {
await manifold.executeWorkflow('perform unknown action');
} catch (error) {
console.error('Critical execution error:', error);
}
```
## Contributing
1. Fork the repository
2. Create your feature branch: `git checkout -b feature/my-feature`
3. Commit your changes: `git commit -am 'Add new feature'`
4. Push to the branch: `git push origin feature/my-feature`
5. Submit a pull request
## License
MIT © 2024 Geoff Seemueller