update project structure
This commit is contained in:
277
crates/local_inference_engine/src/text_generation.rs
Normal file
277
crates/local_inference_engine/src/text_generation.rs
Normal file
@@ -0,0 +1,277 @@
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle_core::{DType, Device, Tensor};
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use tokenizers::Tokenizer;
|
||||
use std::io::Write;
|
||||
|
||||
use crate::model::Model;
|
||||
use crate::token_output_stream::TokenOutputStream;
|
||||
|
||||
pub struct TextGeneration {
|
||||
model: Model,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn new(
|
||||
model: Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
// Run text generation and print to stdout
|
||||
pub fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("<eos>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the <eos> token"),
|
||||
};
|
||||
|
||||
let eot_token = match self.tokenizer.get_token("<end_of_turn>") {
|
||||
Some(token) => token,
|
||||
None => {
|
||||
println!(
|
||||
"Warning: <end_of_turn> token not found in tokenizer, using <eos> as a backup"
|
||||
);
|
||||
eos_token
|
||||
}
|
||||
};
|
||||
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input, start_pos)?;
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
|
||||
// Manual implementation of repeat penalty to avoid type conflicts
|
||||
let mut logits_vec = logits.to_vec1::<f32>()?;
|
||||
|
||||
for &token_id in &tokens[start_at..] {
|
||||
let token_id = token_id as usize;
|
||||
if token_id < logits_vec.len() {
|
||||
let score = logits_vec[token_id];
|
||||
let sign = if score < 0.0 { -1.0 } else { 1.0 };
|
||||
logits_vec[token_id] = sign * score / self.repeat_penalty;
|
||||
}
|
||||
}
|
||||
|
||||
// Create a new tensor with the modified logits
|
||||
let device = logits.device().clone();
|
||||
let shape = logits.shape().clone();
|
||||
let new_logits = Tensor::new(&logits_vec[..], &device)?;
|
||||
new_logits.reshape(shape)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token || next_token == eot_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// Run text generation and write to a buffer
|
||||
pub fn run_with_output(&mut self, prompt: &str, sample_len: usize, output: &mut Vec<u8>) -> Result<()> {
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
|
||||
// Write prompt tokens to output
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
write!(output, "{}", t)?;
|
||||
}
|
||||
}
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("<eos>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the <eos> token"),
|
||||
};
|
||||
|
||||
let eot_token = match self.tokenizer.get_token("<end_of_turn>") {
|
||||
Some(token) => token,
|
||||
None => {
|
||||
write!(output, "Warning: <end_of_turn> token not found in tokenizer, using <eos> as a backup")?;
|
||||
eos_token
|
||||
}
|
||||
};
|
||||
|
||||
// Determine if we're using a Model3 (gemma-3) variant
|
||||
let is_model3 = match &self.model {
|
||||
Model::V3(_) => true,
|
||||
_ => false,
|
||||
};
|
||||
|
||||
// For Model3, we need to use a different approach
|
||||
if is_model3 {
|
||||
// For gemma-3 models, we'll generate one token at a time with the full context
|
||||
let start_gen = std::time::Instant::now();
|
||||
|
||||
// Initial generation with the full prompt
|
||||
let input = Tensor::new(tokens.as_slice(), &self.device)?.unsqueeze(0)?;
|
||||
let mut logits = self.model.forward(&input, 0)?;
|
||||
logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
|
||||
for _ in 0..sample_len {
|
||||
// Apply repeat penalty if needed
|
||||
let current_logits = if self.repeat_penalty == 1. {
|
||||
logits.clone()
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
|
||||
// Manual implementation of repeat penalty to avoid type conflicts
|
||||
let mut logits_vec = logits.to_vec1::<f32>()?;
|
||||
|
||||
for &token_id in &tokens[start_at..] {
|
||||
let token_id = token_id as usize;
|
||||
if token_id < logits_vec.len() {
|
||||
let score = logits_vec[token_id];
|
||||
let sign = if score < 0.0 { -1.0 } else { 1.0 };
|
||||
logits_vec[token_id] = sign * score / self.repeat_penalty;
|
||||
}
|
||||
}
|
||||
|
||||
// Create a new tensor with the modified logits
|
||||
let device = logits.device().clone();
|
||||
let shape = logits.shape().clone();
|
||||
let new_logits = Tensor::new(&logits_vec[..], &device)?;
|
||||
new_logits.reshape(shape)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(¤t_logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
|
||||
if next_token == eos_token || next_token == eot_token {
|
||||
break;
|
||||
}
|
||||
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
write!(output, "{}", t)?;
|
||||
}
|
||||
|
||||
// For the next iteration, just use the new token
|
||||
let new_input = Tensor::new(&[next_token], &self.device)?.unsqueeze(0)?;
|
||||
logits = self.model.forward(&new_input, tokens.len() - 1)?;
|
||||
logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
}
|
||||
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Standard approach for other models
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input, start_pos)?;
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
|
||||
// Manual implementation of repeat penalty to avoid type conflicts
|
||||
let mut logits_vec = logits.to_vec1::<f32>()?;
|
||||
|
||||
for &token_id in &tokens[start_at..] {
|
||||
let token_id = token_id as usize;
|
||||
if token_id < logits_vec.len() {
|
||||
let score = logits_vec[token_id];
|
||||
let sign = if score < 0.0 { -1.0 } else { 1.0 };
|
||||
logits_vec[token_id] = sign * score / self.repeat_penalty;
|
||||
}
|
||||
}
|
||||
|
||||
// Create a new tensor with the modified logits
|
||||
let device = logits.device().clone();
|
||||
let shape = logits.shape().clone();
|
||||
let new_logits = Tensor::new(&logits_vec[..], &device)?;
|
||||
new_logits.reshape(shape)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token || next_token == eot_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
write!(output, "{}", t)?;
|
||||
}
|
||||
}
|
||||
|
||||
// Write any remaining tokens
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
write!(output, "{}", rest)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user