mirror of
https://github.com/geoffsee/open-gsio.git
synced 2025-09-08 22:56:46 +00:00
update prompts and ollama endpoint
This commit is contained in:
@@ -1,50 +1,52 @@
|
||||
const a = {
|
||||
"Can you search for the latest quantum computing breakthroughs?":
|
||||
"I don't have web access.",
|
||||
"Can you search for the latest quantum computing breakthroughs?":
|
||||
"I don't have web access.",
|
||||
};
|
||||
|
||||
const b = {
|
||||
"Calculate the number of unique ways to arrange the letters in the word 'SUCCESS'.": `
|
||||
"Calculate the number of unique ways to arrange the letters in the word SUCCESS.": `
|
||||
Alright, let's tackle 'SUCCESS' and see just how unique it can get!
|
||||
1. Step 1: Count the Letters
|
||||
### Step 1: Count the Letters
|
||||
The word 'SUCCESS' has 7 letters, but it’s no free-for-all—there are repeats!
|
||||
- S: 3 times
|
||||
- U: 1 time
|
||||
- C: 2 times
|
||||
- E: 1 time
|
||||
Erdős would call this a combinatorial party with some guests arriving multiple times.
|
||||
2. Step 2: The Formula for Permutations with Repetition
|
||||
### Step 2: The Formula for Permutations with Repetition
|
||||
When letters repeat, we divide to avoid overcounting. The magic formula is:
|
||||
$$
|
||||
\frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!}
|
||||
$$
|
||||
Here, (n) is the total number of letters, and (k_i) are the frequencies of each unique letter.
|
||||
3. Step 3: Plug in the Values
|
||||
### Step 3. Plug in the Values
|
||||
Let’s compute:
|
||||
$$
|
||||
\frac{7!}{3! \cdot 1! \cdot 2! \cdot 1!} = 420
|
||||
$$
|
||||
|
||||
4. Step 4: Reveal the Result
|
||||
There are **420 unique arrangements** of 'SUCCESS'. Mathematically satisfying, isn’t it? It’s as if every version of success gets its own unique permutation!`,
|
||||
"Calculate the number of unique ways to arrange the letters in the word 'MISSISSIPPI'.": `Ready for some permutation wizardry? Let’s decode 'MISSISSIPPI'!
|
||||
1. Step 1: Count the Letters
|
||||
### Step 4: Reveal the Result
|
||||
There are 420 unique arrangements of 'SUCCESS'. Mathematically satisfying, isn’t it? It’s as if every version of success gets its own unique permutation!`,
|
||||
|
||||
|
||||
"Calculate the number of unique ways to arrange the letters in the word MISSISSIPPI.":
|
||||
`Ready for some permutation wizardry? Let’s decode 'MISSISSIPPI'!
|
||||
### Step 1: Count the Letters
|
||||
'MISSISSIPPI' has 11 letters. But like a social network with cliques, some letters appear in multiples:
|
||||
- M: 1
|
||||
- I: 4
|
||||
- S: 4
|
||||
- P: 2
|
||||
2. Step 2: Apply the Permutation Formula for Repetition
|
||||
### Step 2: Apply the Permutation Formula for Repetition
|
||||
The formula for such a case is:
|
||||
$$
|
||||
\frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!}
|
||||
$$
|
||||
3. Step 3: Plug in the Values
|
||||
### Step 3: Plug in the Values
|
||||
Here’s where we let the math do its magic:
|
||||
$$
|
||||
\frac{11!}{1! \cdot 4! \cdot 4! \cdot 2!}
|
||||
$$
|
||||
4. Step 4: Simplify Step-by-Step
|
||||
### Step 4: Simplify Step-by-Step
|
||||
Let’s break it down:
|
||||
- (11! = 39,916,800)
|
||||
- (4! = 24)
|
||||
@@ -53,19 +55,18 @@ Let’s break it down:
|
||||
$$
|
||||
\frac{39,916,800}{1 \cdot 24 \cdot 24 \cdot 2} = 34,650
|
||||
$$
|
||||
5. Step 5: The Grand Finale
|
||||
There are **34,650 unique arrangements** of 'MISSISSIPPI'. Erdős would marvel at the sheer elegance of these numbers—much like the way rivers meander through the land, permutations flow through possibilities.`,
|
||||
### Step 5: The Grand Finale
|
||||
There are 34,650 unique arrangements of 'MISSISSIPPI'.`,
|
||||
};
|
||||
|
||||
const c = {
|
||||
// c remains unchanged as it contains image generation prompts
|
||||
"Render a Greek statue with warm marble tones and realistic proportions.":
|
||||
"I don't have the ability to generate images right now. ",
|
||||
// c remains unchanged as it contains image generation prompts
|
||||
"Render a Greek statue with warm marble tones and realistic proportions.":
|
||||
"I don't have the ability to generate images right now. ",
|
||||
};
|
||||
|
||||
const d = {
|
||||
"Demonstrate all outputs.": `
|
||||
# Comprehensive Markdown Showcase
|
||||
"Demonstrate markdown formatted text.": `
|
||||
## Headers
|
||||
~~~markdown
|
||||
# Large Header
|
||||
@@ -73,80 +74,48 @@ const d = {
|
||||
### Small Header
|
||||
~~~
|
||||
## Ordered Lists
|
||||
~~~markdown
|
||||
1. First Item
|
||||
2. Second Item
|
||||
1. Subitem 1
|
||||
2. Subitem 2
|
||||
3. Third Item
|
||||
~~~
|
||||
## Unordered Lists
|
||||
~~~markdown
|
||||
- First Item
|
||||
- Second Item
|
||||
- Subitem 1
|
||||
- Subitem 2
|
||||
~~~
|
||||
## Links
|
||||
~~~markdown
|
||||
[Visit OpenAI](https://openai.com/)
|
||||
~~~
|
||||
## Images
|
||||
~~~markdown
|
||||

|
||||
~~~
|
||||

|
||||
## Inline Code
|
||||
~~~markdown
|
||||
\`console.log('Hello, Markdown!')\`
|
||||
~~~
|
||||
## Code Blocks
|
||||
\`\`\`markdown
|
||||
~~~javascript
|
||||
console.log(marked.parse('A Description List:\\n'
|
||||
+ ': Topic 1 : Description 1\\n'
|
||||
+ ': **Topic 2** : *Description 2*'));
|
||||
~~~
|
||||
\`\`\`
|
||||
## Tables
|
||||
~~~markdown
|
||||
| Name | Value |
|
||||
|---------|-------|
|
||||
| Item A | 10 |
|
||||
| Item B | 20 |
|
||||
~~~
|
||||
## Blockquotes
|
||||
~~~markdown
|
||||
> Markdown makes writing beautiful.
|
||||
> - Markdown Fan
|
||||
~~~
|
||||
## Horizontal Rule
|
||||
~~~markdown
|
||||
---
|
||||
~~~
|
||||
## Font: Bold and Italic
|
||||
~~~markdown
|
||||
**Bold Text**
|
||||
*Italic Text*
|
||||
~~~
|
||||
## Font: Strikethrough
|
||||
~~~markdown
|
||||
~~Struck-through text~~
|
||||
~~~
|
||||
---
|
||||
## Math: Inline
|
||||
This is block level katex:
|
||||
## Math
|
||||
~~~markdown
|
||||
$$
|
||||
c = \\\\pm\\\\sqrt{a^2 + b^2}
|
||||
$$
|
||||
~~~
|
||||
## Math: Block
|
||||
This is inline katex
|
||||
~~~markdown
|
||||
$c = \\\\pm\\\\sqrt{a^2 + b^2}$
|
||||
~~~
|
||||
`,
|
||||
$$`,
|
||||
};
|
||||
|
||||
export default { a, b, c, d };
|
||||
export default {a, b, c, d};
|
||||
|
@@ -20,7 +20,7 @@ export class ProviderRepository {
|
||||
anthropic: 'https://api.anthropic.com/v1',
|
||||
openai: 'https://api.openai.com/v1',
|
||||
cerebras: 'https://api.cerebras.com/v1',
|
||||
ollama: "http://localhost:11434",
|
||||
ollama: "http://localhost:11434/v1",
|
||||
mlx: "http://localhost:10240/v1",
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user