update prompts and ollama endpoint

This commit is contained in:
geoffsee
2025-06-24 15:12:12 -04:00
parent 22bf2f1c2f
commit a367812fe7
2 changed files with 26 additions and 57 deletions

View File

@@ -1,50 +1,52 @@
const a = { const a = {
"Can you search for the latest quantum computing breakthroughs?": "Can you search for the latest quantum computing breakthroughs?":
"I don't have web access.", "I don't have web access.",
}; };
const b = { const b = {
"Calculate the number of unique ways to arrange the letters in the word 'SUCCESS'.": ` "Calculate the number of unique ways to arrange the letters in the word SUCCESS.": `
Alright, let's tackle 'SUCCESS' and see just how unique it can get! Alright, let's tackle 'SUCCESS' and see just how unique it can get!
1. Step 1: Count the Letters ### Step 1: Count the Letters
The word 'SUCCESS' has 7 letters, but its no free-for-all—there are repeats! The word 'SUCCESS' has 7 letters, but its no free-for-all—there are repeats!
- S: 3 times - S: 3 times
- U: 1 time - U: 1 time
- C: 2 times - C: 2 times
- E: 1 time - E: 1 time
Erdős would call this a combinatorial party with some guests arriving multiple times. ### Step 2: The Formula for Permutations with Repetition
2. Step 2: The Formula for Permutations with Repetition
When letters repeat, we divide to avoid overcounting. The magic formula is: When letters repeat, we divide to avoid overcounting. The magic formula is:
$$ $$
\frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!} \frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!}
$$ $$
Here, (n) is the total number of letters, and (k_i) are the frequencies of each unique letter. Here, (n) is the total number of letters, and (k_i) are the frequencies of each unique letter.
3. Step 3: Plug in the Values ### Step 3. Plug in the Values
Lets compute: Lets compute:
$$ $$
\frac{7!}{3! \cdot 1! \cdot 2! \cdot 1!} = 420 \frac{7!}{3! \cdot 1! \cdot 2! \cdot 1!} = 420
$$ $$
4. Step 4: Reveal the Result ### Step 4: Reveal the Result
There are **420 unique arrangements** of 'SUCCESS'. Mathematically satisfying, isnt it? Its as if every version of success gets its own unique permutation!`, There are 420 unique arrangements of 'SUCCESS'. Mathematically satisfying, isnt it? Its as if every version of success gets its own unique permutation!`,
"Calculate the number of unique ways to arrange the letters in the word 'MISSISSIPPI'.": `Ready for some permutation wizardry? Lets decode 'MISSISSIPPI'!
1. Step 1: Count the Letters
"Calculate the number of unique ways to arrange the letters in the word MISSISSIPPI.":
`Ready for some permutation wizardry? Lets decode 'MISSISSIPPI'!
### Step 1: Count the Letters
'MISSISSIPPI' has 11 letters. But like a social network with cliques, some letters appear in multiples: 'MISSISSIPPI' has 11 letters. But like a social network with cliques, some letters appear in multiples:
- M: 1 - M: 1
- I: 4 - I: 4
- S: 4 - S: 4
- P: 2 - P: 2
2. Step 2: Apply the Permutation Formula for Repetition ### Step 2: Apply the Permutation Formula for Repetition
The formula for such a case is: The formula for such a case is:
$$ $$
\frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!} \frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!}
$$ $$
3. Step 3: Plug in the Values ### Step 3: Plug in the Values
Heres where we let the math do its magic: Heres where we let the math do its magic:
$$ $$
\frac{11!}{1! \cdot 4! \cdot 4! \cdot 2!} \frac{11!}{1! \cdot 4! \cdot 4! \cdot 2!}
$$ $$
4. Step 4: Simplify Step-by-Step ### Step 4: Simplify Step-by-Step
Lets break it down: Lets break it down:
- (11! = 39,916,800) - (11! = 39,916,800)
- (4! = 24) - (4! = 24)
@@ -53,19 +55,18 @@ Lets break it down:
$$ $$
\frac{39,916,800}{1 \cdot 24 \cdot 24 \cdot 2} = 34,650 \frac{39,916,800}{1 \cdot 24 \cdot 24 \cdot 2} = 34,650
$$ $$
5. Step 5: The Grand Finale ### Step 5: The Grand Finale
There are **34,650 unique arrangements** of 'MISSISSIPPI'. Erdős would marvel at the sheer elegance of these numbers—much like the way rivers meander through the land, permutations flow through possibilities.`, There are 34,650 unique arrangements of 'MISSISSIPPI'.`,
}; };
const c = { const c = {
// c remains unchanged as it contains image generation prompts // c remains unchanged as it contains image generation prompts
"Render a Greek statue with warm marble tones and realistic proportions.": "Render a Greek statue with warm marble tones and realistic proportions.":
"I don't have the ability to generate images right now. ", "I don't have the ability to generate images right now. ",
}; };
const d = { const d = {
"Demonstrate all outputs.": ` "Demonstrate markdown formatted text.": `
# Comprehensive Markdown Showcase
## Headers ## Headers
~~~markdown ~~~markdown
# Large Header # Large Header
@@ -73,80 +74,48 @@ const d = {
### Small Header ### Small Header
~~~ ~~~
## Ordered Lists ## Ordered Lists
~~~markdown
1. First Item 1. First Item
2. Second Item 2. Second Item
1. Subitem 1 1. Subitem 1
2. Subitem 2 2. Subitem 2
3. Third Item 3. Third Item
~~~
## Unordered Lists ## Unordered Lists
~~~markdown
- First Item - First Item
- Second Item - Second Item
- Subitem 1 - Subitem 1
- Subitem 2 - Subitem 2
~~~
## Links ## Links
~~~markdown
[Visit OpenAI](https://openai.com/) [Visit OpenAI](https://openai.com/)
~~~
## Images ## Images
~~~markdown
![Example Image](example.jpg)
~~~
![Example Image](example.jpg) ![Example Image](example.jpg)
## Inline Code ## Inline Code
~~~markdown
\`console.log('Hello, Markdown!')\` \`console.log('Hello, Markdown!')\`
~~~
## Code Blocks ## Code Blocks
\`\`\`markdown
~~~javascript ~~~javascript
console.log(marked.parse('A Description List:\\n' console.log(marked.parse('A Description List:\\n'
+ ': Topic 1 : Description 1\\n' + ': Topic 1 : Description 1\\n'
+ ': **Topic 2** : *Description 2*')); + ': **Topic 2** : *Description 2*'));
~~~ ~~~
\`\`\`
## Tables ## Tables
~~~markdown
| Name | Value | | Name | Value |
|---------|-------| |---------|-------|
| Item A | 10 | | Item A | 10 |
| Item B | 20 | | Item B | 20 |
~~~
## Blockquotes ## Blockquotes
~~~markdown
> Markdown makes writing beautiful. > Markdown makes writing beautiful.
> - Markdown Fan > - Markdown Fan
~~~
## Horizontal Rule ## Horizontal Rule
~~~markdown
--- ---
~~~
## Font: Bold and Italic ## Font: Bold and Italic
~~~markdown
**Bold Text** **Bold Text**
*Italic Text* *Italic Text*
~~~
## Font: Strikethrough ## Font: Strikethrough
~~~markdown
~~Struck-through text~~ ~~Struck-through text~~
~~~ ## Math
---
## Math: Inline
This is block level katex:
~~~markdown ~~~markdown
$$ $$
c = \\\\pm\\\\sqrt{a^2 + b^2} c = \\\\pm\\\\sqrt{a^2 + b^2}
$$ $$`,
~~~
## Math: Block
This is inline katex
~~~markdown
$c = \\\\pm\\\\sqrt{a^2 + b^2}$
~~~
`,
}; };
export default { a, b, c, d }; export default {a, b, c, d};

View File

@@ -20,7 +20,7 @@ export class ProviderRepository {
anthropic: 'https://api.anthropic.com/v1', anthropic: 'https://api.anthropic.com/v1',
openai: 'https://api.openai.com/v1', openai: 'https://api.openai.com/v1',
cerebras: 'https://api.cerebras.com/v1', cerebras: 'https://api.cerebras.com/v1',
ollama: "http://localhost:11434", ollama: "http://localhost:11434/v1",
mlx: "http://localhost:10240/v1", mlx: "http://localhost:10240/v1",
} }